ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri3 Unicode version

Theorem tfri3 5953
Description: Principle of Transfinite Recursion, part 3 of 3. Theorem 7.41(3) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule  G ( as described at tfri1 5951). Finally, we show that  F is unique. We do this by showing that any class  B with the same properties of  F that we showed in parts 1 and 2 is identical to  F. (Contributed by Jim Kingdon, 4-May-2019.)
Hypotheses
Ref Expression
tfri3.1  |-  F  = recs ( G )
tfri3.2  |-  ( Fun 
G  /\  ( G `  x )  e.  _V )
Assertion
Ref Expression
tfri3  |-  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  B  =  F )
Distinct variable groups:    x, B    x, F    x, G

Proof of Theorem tfri3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfv 1421 . . . 4  |-  F/ x  B  Fn  On
2 nfra1 2355 . . . 4  |-  F/ x A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) )
31, 2nfan 1457 . . 3  |-  F/ x
( B  Fn  On  /\ 
A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )
4 nfv 1421 . . . . . 6  |-  F/ x
( B `  y
)  =  ( F `
 y )
53, 4nfim 1464 . . . . 5  |-  F/ x
( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  y )  =  ( F `  y ) )
6 fveq2 5178 . . . . . . 7  |-  ( x  =  y  ->  ( B `  x )  =  ( B `  y ) )
7 fveq2 5178 . . . . . . 7  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
86, 7eqeq12d 2054 . . . . . 6  |-  ( x  =  y  ->  (
( B `  x
)  =  ( F `
 x )  <->  ( B `  y )  =  ( F `  y ) ) )
98imbi2d 219 . . . . 5  |-  ( x  =  y  ->  (
( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  x )  =  ( F `  x ) )  <->  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  y )  =  ( F `  y ) ) ) )
10 r19.21v 2396 . . . . . 6  |-  ( A. y  e.  x  (
( B  Fn  On  /\ 
A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  y )  =  ( F `  y ) )  <->  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  A. y  e.  x  ( B `  y )  =  ( F `  y ) ) )
11 rsp 2369 . . . . . . . . . 10  |-  ( A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) )  ->  ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) ) )
12 onss 4219 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  On  ->  x  C_  On )
13 tfri3.1 . . . . . . . . . . . . . . . . . . . . . 22  |-  F  = recs ( G )
14 tfri3.2 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Fun 
G  /\  ( G `  x )  e.  _V )
1513, 14tfri1 5951 . . . . . . . . . . . . . . . . . . . . 21  |-  F  Fn  On
16 fvreseq 5271 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( B  Fn  On  /\  F  Fn  On )  /\  x  C_  On )  ->  ( ( B  |`  x )  =  ( F  |`  x )  <->  A. y  e.  x  ( B `  y )  =  ( F `  y ) ) )
1715, 16mpanl2 411 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  Fn  On  /\  x  C_  On )  -> 
( ( B  |`  x )  =  ( F  |`  x )  <->  A. y  e.  x  ( B `  y )  =  ( F `  y ) ) )
18 fveq2 5178 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  |`  x )  =  ( F  |`  x )  ->  ( G `  ( B  |`  x ) )  =  ( G `  ( F  |`  x ) ) )
1917, 18syl6bir 153 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  Fn  On  /\  x  C_  On )  -> 
( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( G `  ( B  |`  x ) )  =  ( G `
 ( F  |`  x ) ) ) )
2012, 19sylan2 270 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  Fn  On  /\  x  e.  On )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( G `  ( B  |`  x ) )  =  ( G `
 ( F  |`  x ) ) ) )
2120ancoms 255 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  On  /\  B  Fn  On )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( G `  ( B  |`  x ) )  =  ( G `
 ( F  |`  x ) ) ) )
2221imp 115 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  On  /\  B  Fn  On )  /\  A. y  e.  x  ( B `  y )  =  ( F `  y ) )  ->  ( G `  ( B  |`  x
) )  =  ( G `  ( F  |`  x ) ) )
2322adantr 261 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  On  /\  B  Fn  On )  /\  A. y  e.  x  ( B `  y )  =  ( F `  y ) )  /\  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  /\  x  e.  On ) )  -> 
( G `  ( B  |`  x ) )  =  ( G `  ( F  |`  x ) ) )
2413, 14tfri2 5952 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  On  ->  ( F `  x )  =  ( G `  ( F  |`  x ) ) )
2524jctr 298 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
( x  e.  On  ->  ( B `  x
)  =  ( G `
 ( B  |`  x ) ) )  /\  ( x  e.  On  ->  ( F `  x )  =  ( G `  ( F  |`  x ) ) ) ) )
26 jcab 535 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  On  ->  ( ( B `  x
)  =  ( G `
 ( B  |`  x ) )  /\  ( F `  x )  =  ( G `  ( F  |`  x ) ) ) )  <->  ( (
x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  /\  (
x  e.  On  ->  ( F `  x )  =  ( G `  ( F  |`  x ) ) ) ) )
2725, 26sylibr 137 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( ( B `  x
)  =  ( G `
 ( B  |`  x ) )  /\  ( F `  x )  =  ( G `  ( F  |`  x ) ) ) ) )
28 eqeq12 2052 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( B `  x
)  =  ( G `
 ( B  |`  x ) )  /\  ( F `  x )  =  ( G `  ( F  |`  x ) ) )  ->  (
( B `  x
)  =  ( F `
 x )  <->  ( G `  ( B  |`  x
) )  =  ( G `  ( F  |`  x ) ) ) )
2927, 28syl6 29 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( ( B `  x
)  =  ( F `
 x )  <->  ( G `  ( B  |`  x
) )  =  ( G `  ( F  |`  x ) ) ) ) )
3029imp 115 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  On  ->  ( B `  x
)  =  ( G `
 ( B  |`  x ) ) )  /\  x  e.  On )  ->  ( ( B `
 x )  =  ( F `  x
)  <->  ( G `  ( B  |`  x ) )  =  ( G `
 ( F  |`  x ) ) ) )
3130adantl 262 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  On  /\  B  Fn  On )  /\  A. y  e.  x  ( B `  y )  =  ( F `  y ) )  /\  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  /\  x  e.  On ) )  -> 
( ( B `  x )  =  ( F `  x )  <-> 
( G `  ( B  |`  x ) )  =  ( G `  ( F  |`  x ) ) ) )
3223, 31mpbird 156 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  On  /\  B  Fn  On )  /\  A. y  e.  x  ( B `  y )  =  ( F `  y ) )  /\  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  /\  x  e.  On ) )  -> 
( B `  x
)  =  ( F `
 x ) )
3332exp43 354 . . . . . . . . . . . . 13  |-  ( ( x  e.  On  /\  B  Fn  On )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( B `  x )  =  ( F `  x ) ) ) ) )
3433com4t 79 . . . . . . . . . . . 12  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( ( x  e.  On  /\  B  Fn  On )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) ) )
3534exp4a 348 . . . . . . . . . . 11  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( x  e.  On  ->  ( B  Fn  On  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) ) ) )
3635pm2.43d 44 . . . . . . . . . 10  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( B  Fn  On  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) ) )
3711, 36syl 14 . . . . . . . . 9  |-  ( A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) )  ->  ( x  e.  On  ->  ( B  Fn  On  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) ) )
3837com3l 75 . . . . . . . 8  |-  ( x  e.  On  ->  ( B  Fn  On  ->  ( A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) ) )
3938impd 242 . . . . . . 7  |-  ( x  e.  On  ->  (
( B  Fn  On  /\ 
A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) )
4039a2d 23 . . . . . 6  |-  ( x  e.  On  ->  (
( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  A. y  e.  x  ( B `  y )  =  ( F `  y ) )  -> 
( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  x )  =  ( F `  x ) ) ) )
4110, 40syl5bi 141 . . . . 5  |-  ( x  e.  On  ->  ( A. y  e.  x  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  y )  =  ( F `  y ) )  ->  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  x )  =  ( F `  x ) ) ) )
425, 9, 41tfis2f 4307 . . . 4  |-  ( x  e.  On  ->  (
( B  Fn  On  /\ 
A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  x )  =  ( F `  x ) ) )
4342com12 27 . . 3  |-  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( B `  x )  =  ( F `  x ) ) )
443, 43ralrimi 2390 . 2  |-  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  A. x  e.  On  ( B `  x )  =  ( F `  x ) )
45 eqfnfv 5265 . . . 4  |-  ( ( B  Fn  On  /\  F  Fn  On )  ->  ( B  =  F  <->  A. x  e.  On  ( B `  x )  =  ( F `  x ) ) )
4615, 45mpan2 401 . . 3  |-  ( B  Fn  On  ->  ( B  =  F  <->  A. x  e.  On  ( B `  x )  =  ( F `  x ) ) )
4746biimpar 281 . 2  |-  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( F `  x ) )  ->  B  =  F )
4844, 47syldan 266 1  |-  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  B  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   A.wral 2306   _Vcvv 2557    C_ wss 2917   Oncon0 4100    |` cres 4347   Fun wfun 4896    Fn wfn 4897   ` cfv 4902  recscrecs 5919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-recs 5920
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator