Step | Hyp | Ref
| Expression |
1 | | nfv 1421 |
. . . 4
⊢
Ⅎ𝑥 𝐵 Fn On |
2 | | nfra1 2355 |
. . . 4
⊢
Ⅎ𝑥∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥)) |
3 | 1, 2 | nfan 1457 |
. . 3
⊢
Ⅎ𝑥(𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) |
4 | | nfv 1421 |
. . . . . 6
⊢
Ⅎ𝑥(𝐵‘𝑦) = (𝐹‘𝑦) |
5 | 3, 4 | nfim 1464 |
. . . . 5
⊢
Ⅎ𝑥((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝐵‘𝑦) = (𝐹‘𝑦)) |
6 | | fveq2 5178 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝐵‘𝑥) = (𝐵‘𝑦)) |
7 | | fveq2 5178 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
8 | 6, 7 | eqeq12d 2054 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝐵‘𝑥) = (𝐹‘𝑥) ↔ (𝐵‘𝑦) = (𝐹‘𝑦))) |
9 | 8 | imbi2d 219 |
. . . . 5
⊢ (𝑥 = 𝑦 → (((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝐵‘𝑥) = (𝐹‘𝑥)) ↔ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝐵‘𝑦) = (𝐹‘𝑦)))) |
10 | | r19.21v 2396 |
. . . . . 6
⊢
(∀𝑦 ∈
𝑥 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝐵‘𝑦) = (𝐹‘𝑦)) ↔ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → ∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦))) |
11 | | rsp 2369 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈ On
(𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥)) → (𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥)))) |
12 | | onss 4219 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ On → 𝑥 ⊆ On) |
13 | | tfri3.1 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐹 = recs(𝐺) |
14 | | tfri3.2 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (Fun
𝐺 ∧ (𝐺‘𝑥) ∈ V) |
15 | 13, 14 | tfri1 5951 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐹 Fn On |
16 | | fvreseq 5271 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐵 Fn On ∧ 𝐹 Fn On) ∧ 𝑥 ⊆ On) → ((𝐵 ↾ 𝑥) = (𝐹 ↾ 𝑥) ↔ ∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦))) |
17 | 15, 16 | mpanl2 411 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 Fn On ∧ 𝑥 ⊆ On) → ((𝐵 ↾ 𝑥) = (𝐹 ↾ 𝑥) ↔ ∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦))) |
18 | | fveq2 5178 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 ↾ 𝑥) = (𝐹 ↾ 𝑥) → (𝐺‘(𝐵 ↾ 𝑥)) = (𝐺‘(𝐹 ↾ 𝑥))) |
19 | 17, 18 | syl6bir 153 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐵 Fn On ∧ 𝑥 ⊆ On) → (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦) → (𝐺‘(𝐵 ↾ 𝑥)) = (𝐺‘(𝐹 ↾ 𝑥)))) |
20 | 12, 19 | sylan2 270 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐵 Fn On ∧ 𝑥 ∈ On) → (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦) → (𝐺‘(𝐵 ↾ 𝑥)) = (𝐺‘(𝐹 ↾ 𝑥)))) |
21 | 20 | ancoms 255 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ On ∧ 𝐵 Fn On) → (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦) → (𝐺‘(𝐵 ↾ 𝑥)) = (𝐺‘(𝐹 ↾ 𝑥)))) |
22 | 21 | imp 115 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ On ∧ 𝐵 Fn On) ∧ ∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦)) → (𝐺‘(𝐵 ↾ 𝑥)) = (𝐺‘(𝐹 ↾ 𝑥))) |
23 | 22 | adantr 261 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ On ∧ 𝐵 Fn On) ∧ ∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦)) ∧ ((𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) ∧ 𝑥 ∈ On)) → (𝐺‘(𝐵 ↾ 𝑥)) = (𝐺‘(𝐹 ↾ 𝑥))) |
24 | 13, 14 | tfri2 5952 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ On → (𝐹‘𝑥) = (𝐺‘(𝐹 ↾ 𝑥))) |
25 | 24 | jctr 298 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → ((𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) ∧ (𝑥 ∈ On → (𝐹‘𝑥) = (𝐺‘(𝐹 ↾ 𝑥))))) |
26 | | jcab 535 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ On → ((𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥)) ∧ (𝐹‘𝑥) = (𝐺‘(𝐹 ↾ 𝑥)))) ↔ ((𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) ∧ (𝑥 ∈ On → (𝐹‘𝑥) = (𝐺‘(𝐹 ↾ 𝑥))))) |
27 | 25, 26 | sylibr 137 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝑥 ∈ On → ((𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥)) ∧ (𝐹‘𝑥) = (𝐺‘(𝐹 ↾ 𝑥))))) |
28 | | eqeq12 2052 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥)) ∧ (𝐹‘𝑥) = (𝐺‘(𝐹 ↾ 𝑥))) → ((𝐵‘𝑥) = (𝐹‘𝑥) ↔ (𝐺‘(𝐵 ↾ 𝑥)) = (𝐺‘(𝐹 ↾ 𝑥)))) |
29 | 27, 28 | syl6 29 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝑥 ∈ On → ((𝐵‘𝑥) = (𝐹‘𝑥) ↔ (𝐺‘(𝐵 ↾ 𝑥)) = (𝐺‘(𝐹 ↾ 𝑥))))) |
30 | 29 | imp 115 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) ∧ 𝑥 ∈ On) → ((𝐵‘𝑥) = (𝐹‘𝑥) ↔ (𝐺‘(𝐵 ↾ 𝑥)) = (𝐺‘(𝐹 ↾ 𝑥)))) |
31 | 30 | adantl 262 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ On ∧ 𝐵 Fn On) ∧ ∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦)) ∧ ((𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) ∧ 𝑥 ∈ On)) → ((𝐵‘𝑥) = (𝐹‘𝑥) ↔ (𝐺‘(𝐵 ↾ 𝑥)) = (𝐺‘(𝐹 ↾ 𝑥)))) |
32 | 23, 31 | mpbird 156 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ On ∧ 𝐵 Fn On) ∧ ∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦)) ∧ ((𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) ∧ 𝑥 ∈ On)) → (𝐵‘𝑥) = (𝐹‘𝑥)) |
33 | 32 | exp43 354 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ On ∧ 𝐵 Fn On) → (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦) → ((𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝑥 ∈ On → (𝐵‘𝑥) = (𝐹‘𝑥))))) |
34 | 33 | com4t 79 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝑥 ∈ On → ((𝑥 ∈ On ∧ 𝐵 Fn On) → (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦) → (𝐵‘𝑥) = (𝐹‘𝑥))))) |
35 | 34 | exp4a 348 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝑥 ∈ On → (𝑥 ∈ On → (𝐵 Fn On → (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦) → (𝐵‘𝑥) = (𝐹‘𝑥)))))) |
36 | 35 | pm2.43d 44 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ On → (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝑥 ∈ On → (𝐵 Fn On → (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦) → (𝐵‘𝑥) = (𝐹‘𝑥))))) |
37 | 11, 36 | syl 14 |
. . . . . . . . 9
⊢
(∀𝑥 ∈ On
(𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥)) → (𝑥 ∈ On → (𝐵 Fn On → (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦) → (𝐵‘𝑥) = (𝐹‘𝑥))))) |
38 | 37 | com3l 75 |
. . . . . . . 8
⊢ (𝑥 ∈ On → (𝐵 Fn On → (∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥)) → (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦) → (𝐵‘𝑥) = (𝐹‘𝑥))))) |
39 | 38 | impd 242 |
. . . . . . 7
⊢ (𝑥 ∈ On → ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦) → (𝐵‘𝑥) = (𝐹‘𝑥)))) |
40 | 39 | a2d 23 |
. . . . . 6
⊢ (𝑥 ∈ On → (((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → ∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐹‘𝑦)) → ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝐵‘𝑥) = (𝐹‘𝑥)))) |
41 | 10, 40 | syl5bi 141 |
. . . . 5
⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝐵‘𝑦) = (𝐹‘𝑦)) → ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝐵‘𝑥) = (𝐹‘𝑥)))) |
42 | 5, 9, 41 | tfis2f 4307 |
. . . 4
⊢ (𝑥 ∈ On → ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝐵‘𝑥) = (𝐹‘𝑥))) |
43 | 42 | com12 27 |
. . 3
⊢ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → (𝑥 ∈ On → (𝐵‘𝑥) = (𝐹‘𝑥))) |
44 | 3, 43 | ralrimi 2390 |
. 2
⊢ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐹‘𝑥)) |
45 | | eqfnfv 5265 |
. . . 4
⊢ ((𝐵 Fn On ∧ 𝐹 Fn On) → (𝐵 = 𝐹 ↔ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐹‘𝑥))) |
46 | 15, 45 | mpan2 401 |
. . 3
⊢ (𝐵 Fn On → (𝐵 = 𝐹 ↔ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐹‘𝑥))) |
47 | 46 | biimpar 281 |
. 2
⊢ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐹‘𝑥)) → 𝐵 = 𝐹) |
48 | 44, 47 | syldan 266 |
1
⊢ ((𝐵 Fn On ∧ ∀𝑥 ∈ On (𝐵‘𝑥) = (𝐺‘(𝐵 ↾ 𝑥))) → 𝐵 = 𝐹) |