Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-sn | GIF version |
Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, although it is not very meaningful in this case. For an alternate definition see dfsn2 3389. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
df-sn | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | csn 3375 | . 2 class {𝐴} |
3 | vx | . . . . 5 setvar 𝑥 | |
4 | 3 | cv 1242 | . . . 4 class 𝑥 |
5 | 4, 1 | wceq 1243 | . . 3 wff 𝑥 = 𝐴 |
6 | 5, 3 | cab 2026 | . 2 class {𝑥 ∣ 𝑥 = 𝐴} |
7 | 2, 6 | wceq 1243 | 1 wff {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
Colors of variables: wff set class |
This definition is referenced by: sneq 3386 elsng 3390 csbsng 3431 rabsn 3437 pw0 3511 iunid 3712 dfiota2 4868 uniabio 4877 dfimafn2 5223 fnsnfv 5232 snec 6167 bdcsn 9990 |
Copyright terms: Public domain | W3C validator |