ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.21v Structured version   GIF version

Theorem r19.21v 2390
Description: Theorem 19.21 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
r19.21v (x A (φψ) ↔ (φx A ψ))
Distinct variable group:   φ,x
Allowed substitution hints:   ψ(x)   A(x)

Proof of Theorem r19.21v
StepHypRef Expression
1 nfv 1418 . 2 xφ
21r19.21 2389 1 (x A (φψ) ↔ (φx A ψ))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98  wral 2300
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-4 1397  ax-17 1416  ax-ial 1424  ax-i5r 1425
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-ral 2305
This theorem is referenced by:  r19.32vdc  2453  rmo4  2728  rmo3  2843  dftr5  3848  reusv3  4158  tfrlem1  5864  tfrlemi1  5887  tfri3  5894  rdgon  5913  raluz2  8258
  Copyright terms: Public domain W3C validator