ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgon Structured version   GIF version

Theorem rdgon 5913
Description: Evaluating the recursive definition generator produces an ordinal. There is a hypothesis that the characteristic function produces ordinals on ordinal arguments. (Contributed by Jim Kingdon, 26-Jul-2019.)
Hypotheses
Ref Expression
rdgon.1 (φ𝐹 Fn V)
rdgon.2 (φA On)
rdgon.3 (φx On (𝐹x) On)
Assertion
Ref Expression
rdgon ((φ B On) → (rec(𝐹, A)‘B) On)
Distinct variable groups:   x,A   x,𝐹   φ,x
Allowed substitution hint:   B(x)

Proof of Theorem rdgon
Dummy variables w z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5121 . . . . 5 (z = x → (rec(𝐹, A)‘z) = (rec(𝐹, A)‘x))
21eleq1d 2103 . . . 4 (z = x → ((rec(𝐹, A)‘z) On ↔ (rec(𝐹, A)‘x) On))
32imbi2d 219 . . 3 (z = x → ((φ → (rec(𝐹, A)‘z) On) ↔ (φ → (rec(𝐹, A)‘x) On)))
4 fveq2 5121 . . . . 5 (z = B → (rec(𝐹, A)‘z) = (rec(𝐹, A)‘B))
54eleq1d 2103 . . . 4 (z = B → ((rec(𝐹, A)‘z) On ↔ (rec(𝐹, A)‘B) On))
65imbi2d 219 . . 3 (z = B → ((φ → (rec(𝐹, A)‘z) On) ↔ (φ → (rec(𝐹, A)‘B) On)))
7 r19.21v 2390 . . . 4 (x z (φ → (rec(𝐹, A)‘x) On) ↔ (φx z (rec(𝐹, A)‘x) On))
8 rdgon.2 . . . . . . . . 9 (φA On)
9 fvres 5141 . . . . . . . . . . . . . 14 (x z → ((rec(𝐹, A) ↾ z)‘x) = (rec(𝐹, A)‘x))
109eleq1d 2103 . . . . . . . . . . . . 13 (x z → (((rec(𝐹, A) ↾ z)‘x) On ↔ (rec(𝐹, A)‘x) On))
1110adantl 262 . . . . . . . . . . . 12 ((φ x z) → (((rec(𝐹, A) ↾ z)‘x) On ↔ (rec(𝐹, A)‘x) On))
12 rdgon.3 . . . . . . . . . . . . . . 15 (φx On (𝐹x) On)
13 fveq2 5121 . . . . . . . . . . . . . . . . 17 (x = w → (𝐹x) = (𝐹w))
1413eleq1d 2103 . . . . . . . . . . . . . . . 16 (x = w → ((𝐹x) On ↔ (𝐹w) On))
1514cbvralv 2527 . . . . . . . . . . . . . . 15 (x On (𝐹x) On ↔ w On (𝐹w) On)
1612, 15sylib 127 . . . . . . . . . . . . . 14 (φw On (𝐹w) On)
17 fveq2 5121 . . . . . . . . . . . . . . . 16 (w = ((rec(𝐹, A) ↾ z)‘x) → (𝐹w) = (𝐹‘((rec(𝐹, A) ↾ z)‘x)))
1817eleq1d 2103 . . . . . . . . . . . . . . 15 (w = ((rec(𝐹, A) ↾ z)‘x) → ((𝐹w) On ↔ (𝐹‘((rec(𝐹, A) ↾ z)‘x)) On))
1918rspcv 2646 . . . . . . . . . . . . . 14 (((rec(𝐹, A) ↾ z)‘x) On → (w On (𝐹w) On → (𝐹‘((rec(𝐹, A) ↾ z)‘x)) On))
2016, 19syl5com 26 . . . . . . . . . . . . 13 (φ → (((rec(𝐹, A) ↾ z)‘x) On → (𝐹‘((rec(𝐹, A) ↾ z)‘x)) On))
2120adantr 261 . . . . . . . . . . . 12 ((φ x z) → (((rec(𝐹, A) ↾ z)‘x) On → (𝐹‘((rec(𝐹, A) ↾ z)‘x)) On))
2211, 21sylbird 159 . . . . . . . . . . 11 ((φ x z) → ((rec(𝐹, A)‘x) On → (𝐹‘((rec(𝐹, A) ↾ z)‘x)) On))
2322ralimdva 2381 . . . . . . . . . 10 (φ → (x z (rec(𝐹, A)‘x) On → x z (𝐹‘((rec(𝐹, A) ↾ z)‘x)) On))
24 vex 2554 . . . . . . . . . . 11 z V
25 iunon 5840 . . . . . . . . . . 11 ((z V x z (𝐹‘((rec(𝐹, A) ↾ z)‘x)) On) → x z (𝐹‘((rec(𝐹, A) ↾ z)‘x)) On)
2624, 25mpan 400 . . . . . . . . . 10 (x z (𝐹‘((rec(𝐹, A) ↾ z)‘x)) On → x z (𝐹‘((rec(𝐹, A) ↾ z)‘x)) On)
2723, 26syl6 29 . . . . . . . . 9 (φ → (x z (rec(𝐹, A)‘x) On → x z (𝐹‘((rec(𝐹, A) ↾ z)‘x)) On))
28 onun2 4182 . . . . . . . . 9 ((A On x z (𝐹‘((rec(𝐹, A) ↾ z)‘x)) On) → (A x z (𝐹‘((rec(𝐹, A) ↾ z)‘x))) On)
298, 27, 28syl6an 1320 . . . . . . . 8 (φ → (x z (rec(𝐹, A)‘x) On → (A x z (𝐹‘((rec(𝐹, A) ↾ z)‘x))) On))
3029adantr 261 . . . . . . 7 ((φ z On) → (x z (rec(𝐹, A)‘x) On → (A x z (𝐹‘((rec(𝐹, A) ↾ z)‘x))) On))
31 rdgon.1 . . . . . . . . . 10 (φ𝐹 Fn V)
3231, 8jca 290 . . . . . . . . 9 (φ → (𝐹 Fn V A On))
33 rdgivallem 5908 . . . . . . . . . 10 ((𝐹 Fn V A On z On) → (rec(𝐹, A)‘z) = (A x z (𝐹‘((rec(𝐹, A) ↾ z)‘x))))
34333expa 1103 . . . . . . . . 9 (((𝐹 Fn V A On) z On) → (rec(𝐹, A)‘z) = (A x z (𝐹‘((rec(𝐹, A) ↾ z)‘x))))
3532, 34sylan 267 . . . . . . . 8 ((φ z On) → (rec(𝐹, A)‘z) = (A x z (𝐹‘((rec(𝐹, A) ↾ z)‘x))))
3635eleq1d 2103 . . . . . . 7 ((φ z On) → ((rec(𝐹, A)‘z) On ↔ (A x z (𝐹‘((rec(𝐹, A) ↾ z)‘x))) On))
3730, 36sylibrd 158 . . . . . 6 ((φ z On) → (x z (rec(𝐹, A)‘x) On → (rec(𝐹, A)‘z) On))
3837expcom 109 . . . . 5 (z On → (φ → (x z (rec(𝐹, A)‘x) On → (rec(𝐹, A)‘z) On)))
3938a2d 23 . . . 4 (z On → ((φx z (rec(𝐹, A)‘x) On) → (φ → (rec(𝐹, A)‘z) On)))
407, 39syl5bi 141 . . 3 (z On → (x z (φ → (rec(𝐹, A)‘x) On) → (φ → (rec(𝐹, A)‘z) On)))
413, 6, 40tfis3 4252 . 2 (B On → (φ → (rec(𝐹, A)‘B) On))
4241impcom 116 1 ((φ B On) → (rec(𝐹, A)‘B) On)
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98   = wceq 1242   wcel 1390  wral 2300  Vcvv 2551  cun 2909   ciun 3648  Oncon0 4066  cres 4290   Fn wfn 4840  cfv 4845  reccrdg 5896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-coll 3863  ax-sep 3866  ax-pow 3918  ax-pr 3935  ax-un 4136  ax-setind 4220
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-fal 1248  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ne 2203  df-ral 2305  df-rex 2306  df-reu 2307  df-rab 2309  df-v 2553  df-sbc 2759  df-csb 2847  df-dif 2914  df-un 2916  df-in 2918  df-ss 2925  df-nul 3219  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-iun 3650  df-br 3756  df-opab 3810  df-mpt 3811  df-tr 3846  df-id 4021  df-iord 4069  df-on 4071  df-suc 4074  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301  df-iota 4810  df-fun 4847  df-fn 4848  df-f 4849  df-f1 4850  df-fo 4851  df-f1o 4852  df-fv 4853  df-recs 5861  df-irdg 5897
This theorem is referenced by:  oacl  5979  omcl  5980  oeicl  5981
  Copyright terms: Public domain W3C validator