Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-f | GIF version |
Description: Define a function (mapping) with domain and codomain. Definition 6.15(3) of [TakeutiZaring] p. 27. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-f | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cF | . . 3 class 𝐹 | |
4 | 1, 2, 3 | wf 4898 | . 2 wff 𝐹:𝐴⟶𝐵 |
5 | 3, 1 | wfn 4897 | . . 3 wff 𝐹 Fn 𝐴 |
6 | 3 | crn 4346 | . . . 4 class ran 𝐹 |
7 | 6, 2 | wss 2917 | . . 3 wff ran 𝐹 ⊆ 𝐵 |
8 | 5, 7 | wa 97 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) |
9 | 4, 8 | wb 98 | 1 wff (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
Colors of variables: wff set class |
This definition is referenced by: feq1 5030 feq2 5031 feq3 5032 nff 5043 sbcfg 5045 ffn 5046 dffn2 5047 frn 5052 dffn3 5053 fss 5054 fco 5056 funssxp 5060 fun 5063 fnfco 5065 fssres 5066 fcoi2 5071 fintm 5075 fin 5076 f0 5080 fconst 5082 f1ssr 5098 fof 5106 dff1o2 5131 fun11iun 5147 ffoss 5158 dff2 5311 fmpt 5319 ffnfv 5323 ffvresb 5328 fpr 5345 fprg 5346 idref 5396 dff1o6 5416 fliftf 5439 1stcof 5790 2ndcof 5791 smores 5907 smores2 5909 iordsmo 5912 frec2uzf1od 9192 fclim 9815 |
Copyright terms: Public domain | W3C validator |