ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndcof Structured version   GIF version

Theorem 2ndcof 5733
Description: Composition of the second member function with another function. (Contributed by FL, 15-Oct-2012.)
Assertion
Ref Expression
2ndcof (𝐹:A⟶(B × 𝐶) → (2nd𝐹):A𝐶)

Proof of Theorem 2ndcof
StepHypRef Expression
1 fo2nd 5727 . . . 4 2nd :V–onto→V
2 fofn 5051 . . . 4 (2nd :V–onto→V → 2nd Fn V)
31, 2ax-mp 7 . . 3 2nd Fn V
4 ffn 4989 . . . 4 (𝐹:A⟶(B × 𝐶) → 𝐹 Fn A)
5 dffn2 4990 . . . 4 (𝐹 Fn A𝐹:A⟶V)
64, 5sylib 127 . . 3 (𝐹:A⟶(B × 𝐶) → 𝐹:A⟶V)
7 fnfco 5008 . . 3 ((2nd Fn V 𝐹:A⟶V) → (2nd𝐹) Fn A)
83, 6, 7sylancr 393 . 2 (𝐹:A⟶(B × 𝐶) → (2nd𝐹) Fn A)
9 rnco 4770 . . 3 ran (2nd𝐹) = ran (2nd ↾ ran 𝐹)
10 frn 4995 . . . . 5 (𝐹:A⟶(B × 𝐶) → ran 𝐹 ⊆ (B × 𝐶))
11 ssres2 4581 . . . . 5 (ran 𝐹 ⊆ (B × 𝐶) → (2nd ↾ ran 𝐹) ⊆ (2nd ↾ (B × 𝐶)))
12 rnss 4507 . . . . 5 ((2nd ↾ ran 𝐹) ⊆ (2nd ↾ (B × 𝐶)) → ran (2nd ↾ ran 𝐹) ⊆ ran (2nd ↾ (B × 𝐶)))
1310, 11, 123syl 17 . . . 4 (𝐹:A⟶(B × 𝐶) → ran (2nd ↾ ran 𝐹) ⊆ ran (2nd ↾ (B × 𝐶)))
14 f2ndres 5729 . . . . 5 (2nd ↾ (B × 𝐶)):(B × 𝐶)⟶𝐶
15 frn 4995 . . . . 5 ((2nd ↾ (B × 𝐶)):(B × 𝐶)⟶𝐶 → ran (2nd ↾ (B × 𝐶)) ⊆ 𝐶)
1614, 15ax-mp 7 . . . 4 ran (2nd ↾ (B × 𝐶)) ⊆ 𝐶
1713, 16syl6ss 2951 . . 3 (𝐹:A⟶(B × 𝐶) → ran (2nd ↾ ran 𝐹) ⊆ 𝐶)
189, 17syl5eqss 2983 . 2 (𝐹:A⟶(B × 𝐶) → ran (2nd𝐹) ⊆ 𝐶)
19 df-f 4849 . 2 ((2nd𝐹):A𝐶 ↔ ((2nd𝐹) Fn A ran (2nd𝐹) ⊆ 𝐶))
208, 18, 19sylanbrc 394 1 (𝐹:A⟶(B × 𝐶) → (2nd𝐹):A𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  Vcvv 2551  wss 2911   × cxp 4286  ran crn 4289  cres 4290  ccom 4292   Fn wfn 4840  wf 4841  ontowfo 4843  2nd c2nd 5708
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935  ax-un 4136
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-rab 2309  df-v 2553  df-sbc 2759  df-csb 2847  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-iun 3650  df-br 3756  df-opab 3810  df-mpt 3811  df-id 4021  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301  df-iota 4810  df-fun 4847  df-fn 4848  df-f 4849  df-fo 4851  df-fv 4853  df-2nd 5710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator