Step | Hyp | Ref
| Expression |
1 | | zex 8254 |
. . . . . . . . 9
⊢ ℤ
∈ V |
2 | 1 | mptex 5387 |
. . . . . . . 8
⊢ (𝑥 ∈ ℤ ↦ (𝑥 + 1)) ∈ V |
3 | | vex 2560 |
. . . . . . . 8
⊢ 𝑧 ∈ V |
4 | 2, 3 | fvex 5195 |
. . . . . . 7
⊢ ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V |
5 | 4 | ax-gen 1338 |
. . . . . 6
⊢
∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V |
6 | | frec2uz.1 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ℤ) |
7 | | frecfnom 5986 |
. . . . . 6
⊢
((∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V ∧ 𝐶 ∈ ℤ) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω) |
8 | 5, 6, 7 | sylancr 393 |
. . . . 5
⊢ (𝜑 → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω) |
9 | | frec2uz.2 |
. . . . . 6
⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
10 | 9 | fneq1i 4993 |
. . . . 5
⊢ (𝐺 Fn ω ↔ frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) Fn ω) |
11 | 8, 10 | sylibr 137 |
. . . 4
⊢ (𝜑 → 𝐺 Fn ω) |
12 | 6, 9 | frec2uzrand 9191 |
. . . . 5
⊢ (𝜑 → ran 𝐺 = (ℤ≥‘𝐶)) |
13 | | eqimss 2997 |
. . . . 5
⊢ (ran
𝐺 =
(ℤ≥‘𝐶) → ran 𝐺 ⊆ (ℤ≥‘𝐶)) |
14 | 12, 13 | syl 14 |
. . . 4
⊢ (𝜑 → ran 𝐺 ⊆ (ℤ≥‘𝐶)) |
15 | | df-f 4906 |
. . . 4
⊢ (𝐺:ω⟶(ℤ≥‘𝐶) ↔ (𝐺 Fn ω ∧ ran 𝐺 ⊆ (ℤ≥‘𝐶))) |
16 | 11, 14, 15 | sylanbrc 394 |
. . 3
⊢ (𝜑 → 𝐺:ω⟶(ℤ≥‘𝐶)) |
17 | 6 | adantr 261 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → 𝐶 ∈ ℤ) |
18 | | simpr 103 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → 𝑦 ∈ ω) |
19 | 17, 9, 18 | frec2uzzd 9186 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ω) → (𝐺‘𝑦) ∈ ℤ) |
20 | 19 | 3adant3 924 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺‘𝑦) ∈ ℤ) |
21 | 20 | zred 8360 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝐺‘𝑦) ∈ ℝ) |
22 | 21 | ltnrd 7129 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ¬ (𝐺‘𝑦) < (𝐺‘𝑦)) |
23 | 22 | adantr 261 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑦) = (𝐺‘𝑧)) → ¬ (𝐺‘𝑦) < (𝐺‘𝑦)) |
24 | | simpr 103 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑦) = (𝐺‘𝑧)) → (𝐺‘𝑦) = (𝐺‘𝑧)) |
25 | 24 | breq2d 3776 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑦) = (𝐺‘𝑧)) → ((𝐺‘𝑦) < (𝐺‘𝑦) ↔ (𝐺‘𝑦) < (𝐺‘𝑧))) |
26 | 23, 25 | mtbid 597 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑦) = (𝐺‘𝑧)) → ¬ (𝐺‘𝑦) < (𝐺‘𝑧)) |
27 | 17 | 3adant3 924 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → 𝐶 ∈ ℤ) |
28 | | simp2 905 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → 𝑦 ∈ ω) |
29 | | simp3 906 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → 𝑧 ∈ ω) |
30 | 27, 9, 28, 29 | frec2uzltd 9189 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 ∈ 𝑧 → (𝐺‘𝑦) < (𝐺‘𝑧))) |
31 | 30 | con3d 561 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (¬ (𝐺‘𝑦) < (𝐺‘𝑧) → ¬ 𝑦 ∈ 𝑧)) |
32 | 31 | adantr 261 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑦) = (𝐺‘𝑧)) → (¬ (𝐺‘𝑦) < (𝐺‘𝑧) → ¬ 𝑦 ∈ 𝑧)) |
33 | 26, 32 | mpd 13 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑦) = (𝐺‘𝑧)) → ¬ 𝑦 ∈ 𝑧) |
34 | 24 | breq1d 3774 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑦) = (𝐺‘𝑧)) → ((𝐺‘𝑦) < (𝐺‘𝑦) ↔ (𝐺‘𝑧) < (𝐺‘𝑦))) |
35 | 23, 34 | mtbid 597 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑦) = (𝐺‘𝑧)) → ¬ (𝐺‘𝑧) < (𝐺‘𝑦)) |
36 | 27, 9, 29, 28 | frec2uzltd 9189 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑧 ∈ 𝑦 → (𝐺‘𝑧) < (𝐺‘𝑦))) |
37 | 36 | adantr 261 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑦) = (𝐺‘𝑧)) → (𝑧 ∈ 𝑦 → (𝐺‘𝑧) < (𝐺‘𝑦))) |
38 | 35, 37 | mtod 589 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑦) = (𝐺‘𝑧)) → ¬ 𝑧 ∈ 𝑦) |
39 | | nntri3 6075 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ (¬ 𝑦 ∈ 𝑧 ∧ ¬ 𝑧 ∈ 𝑦))) |
40 | 39 | 3adant1 922 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ (¬ 𝑦 ∈ 𝑧 ∧ ¬ 𝑧 ∈ 𝑦))) |
41 | 40 | adantr 261 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑦) = (𝐺‘𝑧)) → (𝑦 = 𝑧 ↔ (¬ 𝑦 ∈ 𝑧 ∧ ¬ 𝑧 ∈ 𝑦))) |
42 | 33, 38, 41 | mpbir2and 851 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ (𝐺‘𝑦) = (𝐺‘𝑧)) → 𝑦 = 𝑧) |
43 | 42 | ex 108 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧)) |
44 | 43 | 3expb 1105 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧)) |
45 | 44 | ralrimivva 2401 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧)) |
46 | | dff13 5407 |
. . 3
⊢ (𝐺:ω–1-1→(ℤ≥‘𝐶) ↔ (𝐺:ω⟶(ℤ≥‘𝐶) ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧))) |
47 | 16, 45, 46 | sylanbrc 394 |
. 2
⊢ (𝜑 → 𝐺:ω–1-1→(ℤ≥‘𝐶)) |
48 | | dff1o5 5135 |
. 2
⊢ (𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ↔ (𝐺:ω–1-1→(ℤ≥‘𝐶) ∧ ran 𝐺 = (ℤ≥‘𝐶))) |
49 | 47, 12, 48 | sylanbrc 394 |
1
⊢ (𝜑 → 𝐺:ω–1-1-onto→(ℤ≥‘𝐶)) |