ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smores2 GIF version

Theorem smores2 5909
Description: A strictly monotone ordinal function restricted to an ordinal is still monotone. (Contributed by Mario Carneiro, 15-Mar-2013.)
Assertion
Ref Expression
smores2 ((Smo 𝐹 ∧ Ord 𝐴) → Smo (𝐹𝐴))

Proof of Theorem smores2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsmo2 5902 . . . . . . 7 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
21simp1bi 919 . . . . . 6 (Smo 𝐹𝐹:dom 𝐹⟶On)
3 ffun 5048 . . . . . 6 (𝐹:dom 𝐹⟶On → Fun 𝐹)
42, 3syl 14 . . . . 5 (Smo 𝐹 → Fun 𝐹)
5 funres 4941 . . . . . 6 (Fun 𝐹 → Fun (𝐹𝐴))
6 funfn 4931 . . . . . 6 (Fun (𝐹𝐴) ↔ (𝐹𝐴) Fn dom (𝐹𝐴))
75, 6sylib 127 . . . . 5 (Fun 𝐹 → (𝐹𝐴) Fn dom (𝐹𝐴))
84, 7syl 14 . . . 4 (Smo 𝐹 → (𝐹𝐴) Fn dom (𝐹𝐴))
9 df-ima 4358 . . . . . 6 (𝐹𝐴) = ran (𝐹𝐴)
10 imassrn 4679 . . . . . 6 (𝐹𝐴) ⊆ ran 𝐹
119, 10eqsstr3i 2976 . . . . 5 ran (𝐹𝐴) ⊆ ran 𝐹
12 frn 5052 . . . . . 6 (𝐹:dom 𝐹⟶On → ran 𝐹 ⊆ On)
132, 12syl 14 . . . . 5 (Smo 𝐹 → ran 𝐹 ⊆ On)
1411, 13syl5ss 2956 . . . 4 (Smo 𝐹 → ran (𝐹𝐴) ⊆ On)
15 df-f 4906 . . . 4 ((𝐹𝐴):dom (𝐹𝐴)⟶On ↔ ((𝐹𝐴) Fn dom (𝐹𝐴) ∧ ran (𝐹𝐴) ⊆ On))
168, 14, 15sylanbrc 394 . . 3 (Smo 𝐹 → (𝐹𝐴):dom (𝐹𝐴)⟶On)
1716adantr 261 . 2 ((Smo 𝐹 ∧ Ord 𝐴) → (𝐹𝐴):dom (𝐹𝐴)⟶On)
18 smodm 5906 . . 3 (Smo 𝐹 → Ord dom 𝐹)
19 ordin 4122 . . . . 5 ((Ord 𝐴 ∧ Ord dom 𝐹) → Ord (𝐴 ∩ dom 𝐹))
20 dmres 4632 . . . . . 6 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
21 ordeq 4109 . . . . . 6 (dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹) → (Ord dom (𝐹𝐴) ↔ Ord (𝐴 ∩ dom 𝐹)))
2220, 21ax-mp 7 . . . . 5 (Ord dom (𝐹𝐴) ↔ Ord (𝐴 ∩ dom 𝐹))
2319, 22sylibr 137 . . . 4 ((Ord 𝐴 ∧ Ord dom 𝐹) → Ord dom (𝐹𝐴))
2423ancoms 255 . . 3 ((Ord dom 𝐹 ∧ Ord 𝐴) → Ord dom (𝐹𝐴))
2518, 24sylan 267 . 2 ((Smo 𝐹 ∧ Ord 𝐴) → Ord dom (𝐹𝐴))
26 resss 4635 . . . . . 6 (𝐹𝐴) ⊆ 𝐹
27 dmss 4534 . . . . . 6 ((𝐹𝐴) ⊆ 𝐹 → dom (𝐹𝐴) ⊆ dom 𝐹)
2826, 27ax-mp 7 . . . . 5 dom (𝐹𝐴) ⊆ dom 𝐹
291simp3bi 921 . . . . 5 (Smo 𝐹 → ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥))
30 ssralv 3004 . . . . 5 (dom (𝐹𝐴) ⊆ dom 𝐹 → (∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥) → ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
3128, 29, 30mpsyl 59 . . . 4 (Smo 𝐹 → ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥))
3231adantr 261 . . 3 ((Smo 𝐹 ∧ Ord 𝐴) → ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥))
33 ordtr1 4125 . . . . . . . . . . 11 (Ord dom (𝐹𝐴) → ((𝑦𝑥𝑥 ∈ dom (𝐹𝐴)) → 𝑦 ∈ dom (𝐹𝐴)))
3425, 33syl 14 . . . . . . . . . 10 ((Smo 𝐹 ∧ Ord 𝐴) → ((𝑦𝑥𝑥 ∈ dom (𝐹𝐴)) → 𝑦 ∈ dom (𝐹𝐴)))
35 inss1 3157 . . . . . . . . . . . 12 (𝐴 ∩ dom 𝐹) ⊆ 𝐴
3620, 35eqsstri 2975 . . . . . . . . . . 11 dom (𝐹𝐴) ⊆ 𝐴
3736sseli 2941 . . . . . . . . . 10 (𝑦 ∈ dom (𝐹𝐴) → 𝑦𝐴)
3834, 37syl6 29 . . . . . . . . 9 ((Smo 𝐹 ∧ Ord 𝐴) → ((𝑦𝑥𝑥 ∈ dom (𝐹𝐴)) → 𝑦𝐴))
3938expcomd 1330 . . . . . . . 8 ((Smo 𝐹 ∧ Ord 𝐴) → (𝑥 ∈ dom (𝐹𝐴) → (𝑦𝑥𝑦𝐴)))
4039imp31 243 . . . . . . 7 ((((Smo 𝐹 ∧ Ord 𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) ∧ 𝑦𝑥) → 𝑦𝐴)
41 fvres 5198 . . . . . . 7 (𝑦𝐴 → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
4240, 41syl 14 . . . . . 6 ((((Smo 𝐹 ∧ Ord 𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) ∧ 𝑦𝑥) → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
4336sseli 2941 . . . . . . . 8 (𝑥 ∈ dom (𝐹𝐴) → 𝑥𝐴)
44 fvres 5198 . . . . . . . 8 (𝑥𝐴 → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
4543, 44syl 14 . . . . . . 7 (𝑥 ∈ dom (𝐹𝐴) → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
4645ad2antlr 458 . . . . . 6 ((((Smo 𝐹 ∧ Ord 𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) ∧ 𝑦𝑥) → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
4742, 46eleq12d 2108 . . . . 5 ((((Smo 𝐹 ∧ Ord 𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) ∧ 𝑦𝑥) → (((𝐹𝐴)‘𝑦) ∈ ((𝐹𝐴)‘𝑥) ↔ (𝐹𝑦) ∈ (𝐹𝑥)))
4847ralbidva 2322 . . . 4 (((Smo 𝐹 ∧ Ord 𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) → (∀𝑦𝑥 ((𝐹𝐴)‘𝑦) ∈ ((𝐹𝐴)‘𝑥) ↔ ∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
4948ralbidva 2322 . . 3 ((Smo 𝐹 ∧ Ord 𝐴) → (∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 ((𝐹𝐴)‘𝑦) ∈ ((𝐹𝐴)‘𝑥) ↔ ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
5032, 49mpbird 156 . 2 ((Smo 𝐹 ∧ Ord 𝐴) → ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 ((𝐹𝐴)‘𝑦) ∈ ((𝐹𝐴)‘𝑥))
51 dfsmo2 5902 . 2 (Smo (𝐹𝐴) ↔ ((𝐹𝐴):dom (𝐹𝐴)⟶On ∧ Ord dom (𝐹𝐴) ∧ ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 ((𝐹𝐴)‘𝑦) ∈ ((𝐹𝐴)‘𝑥)))
5217, 25, 50, 51syl3anbrc 1088 1 ((Smo 𝐹 ∧ Ord 𝐴) → Smo (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wcel 1393  wral 2306  cin 2916  wss 2917  Ord word 4099  Oncon0 4100  dom cdm 4345  ran crn 4346  cres 4347  cima 4348  Fun wfun 4896   Fn wfn 4897  wf 4898  cfv 4902  Smo wsmo 5900
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-tr 3855  df-iord 4103  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-fv 4910  df-smo 5901
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator