Step | Hyp | Ref
| Expression |
1 | | vex 2560 |
. . . . . . . . . 10
⊢ 𝑢 ∈ V |
2 | | eqeq1 2046 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑢 → (𝑧 = 𝐵 ↔ 𝑢 = 𝐵)) |
3 | 2 | rexbidv 2327 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑢 → (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑢 = 𝐵)) |
4 | 1, 3 | elab 2687 |
. . . . . . . . 9
⊢ (𝑢 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ↔ ∃𝑥 ∈ 𝐴 𝑢 = 𝐵) |
5 | | r19.29 2450 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ ∃𝑥 ∈ 𝐴 𝑢 = 𝐵) → ∃𝑥 ∈ 𝐴 ((𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ 𝑢 = 𝐵)) |
6 | | nfv 1421 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(Fun 𝑢 ∧ Fun ◡𝑢) |
7 | | nfre1 2365 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥∃𝑥 ∈ 𝐴 𝑧 = 𝐵 |
8 | 7 | nfab 2182 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} |
9 | | nfv 1421 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢) |
10 | 8, 9 | nfralxy 2360 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥∀𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢) |
11 | 6, 10 | nfan 1457 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥((Fun 𝑢 ∧ Fun ◡𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) |
12 | | f1eq1 5087 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝐵 → (𝑢:𝐷–1-1→𝑆 ↔ 𝐵:𝐷–1-1→𝑆)) |
13 | 12 | biimparc 283 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵:𝐷–1-1→𝑆 ∧ 𝑢 = 𝐵) → 𝑢:𝐷–1-1→𝑆) |
14 | | df-f1 4907 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢:𝐷–1-1→𝑆 ↔ (𝑢:𝐷⟶𝑆 ∧ Fun ◡𝑢)) |
15 | | ffun 5048 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢:𝐷⟶𝑆 → Fun 𝑢) |
16 | 15 | anim1i 323 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢:𝐷⟶𝑆 ∧ Fun ◡𝑢) → (Fun 𝑢 ∧ Fun ◡𝑢)) |
17 | 14, 16 | sylbi 114 |
. . . . . . . . . . . . . . 15
⊢ (𝑢:𝐷–1-1→𝑆 → (Fun 𝑢 ∧ Fun ◡𝑢)) |
18 | 13, 17 | syl 14 |
. . . . . . . . . . . . . 14
⊢ ((𝐵:𝐷–1-1→𝑆 ∧ 𝑢 = 𝐵) → (Fun 𝑢 ∧ Fun ◡𝑢)) |
19 | 18 | adantlr 446 |
. . . . . . . . . . . . 13
⊢ (((𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ 𝑢 = 𝐵) → (Fun 𝑢 ∧ Fun ◡𝑢)) |
20 | | vex 2560 |
. . . . . . . . . . . . . . . 16
⊢ 𝑣 ∈ V |
21 | | eqeq1 2046 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑣 → (𝑧 = 𝐵 ↔ 𝑣 = 𝐵)) |
22 | 21 | rexbidv 2327 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑣 → (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑣 = 𝐵)) |
23 | 20, 22 | elab 2687 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ↔ ∃𝑥 ∈ 𝐴 𝑣 = 𝐵) |
24 | | fun11iun.1 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
25 | 24 | eqeq2d 2051 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (𝑣 = 𝐵 ↔ 𝑣 = 𝐶)) |
26 | 25 | cbvrexv 2534 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑥 ∈
𝐴 𝑣 = 𝐵 ↔ ∃𝑦 ∈ 𝐴 𝑣 = 𝐶) |
27 | | r19.29 2450 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∀𝑦 ∈
𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵) ∧ ∃𝑦 ∈ 𝐴 𝑣 = 𝐶) → ∃𝑦 ∈ 𝐴 ((𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵) ∧ 𝑣 = 𝐶)) |
28 | | sseq12 2968 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑢 = 𝐵 ∧ 𝑣 = 𝐶) → (𝑢 ⊆ 𝑣 ↔ 𝐵 ⊆ 𝐶)) |
29 | 28 | ancoms 255 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑣 = 𝐶 ∧ 𝑢 = 𝐵) → (𝑢 ⊆ 𝑣 ↔ 𝐵 ⊆ 𝐶)) |
30 | | sseq12 2968 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑣 = 𝐶 ∧ 𝑢 = 𝐵) → (𝑣 ⊆ 𝑢 ↔ 𝐶 ⊆ 𝐵)) |
31 | 29, 30 | orbi12d 707 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑣 = 𝐶 ∧ 𝑢 = 𝐵) → ((𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢) ↔ (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵))) |
32 | 31 | biimprcd 149 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵) → ((𝑣 = 𝐶 ∧ 𝑢 = 𝐵) → (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢))) |
33 | 32 | expdimp 246 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵) ∧ 𝑣 = 𝐶) → (𝑢 = 𝐵 → (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢))) |
34 | 33 | rexlimivw 2429 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃𝑦 ∈
𝐴 ((𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵) ∧ 𝑣 = 𝐶) → (𝑢 = 𝐵 → (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢))) |
35 | 34 | imp 115 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∃𝑦 ∈
𝐴 ((𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵) ∧ 𝑣 = 𝐶) ∧ 𝑢 = 𝐵) → (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) |
36 | 27, 35 | sylan 267 |
. . . . . . . . . . . . . . . . . 18
⊢
(((∀𝑦 ∈
𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵) ∧ ∃𝑦 ∈ 𝐴 𝑣 = 𝐶) ∧ 𝑢 = 𝐵) → (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) |
37 | 36 | an32s 502 |
. . . . . . . . . . . . . . . . 17
⊢
(((∀𝑦 ∈
𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵) ∧ 𝑢 = 𝐵) ∧ ∃𝑦 ∈ 𝐴 𝑣 = 𝐶) → (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) |
38 | 37 | adantlll 449 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ 𝑢 = 𝐵) ∧ ∃𝑦 ∈ 𝐴 𝑣 = 𝐶) → (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) |
39 | 26, 38 | sylan2b 271 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ 𝑢 = 𝐵) ∧ ∃𝑥 ∈ 𝐴 𝑣 = 𝐵) → (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) |
40 | 23, 39 | sylan2b 271 |
. . . . . . . . . . . . . 14
⊢ ((((𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ 𝑢 = 𝐵) ∧ 𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) → (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) |
41 | 40 | ralrimiva 2392 |
. . . . . . . . . . . . 13
⊢ (((𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ 𝑢 = 𝐵) → ∀𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) |
42 | 19, 41 | jca 290 |
. . . . . . . . . . . 12
⊢ (((𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun ◡𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢))) |
43 | 42 | a1i 9 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → (((𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun ◡𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)))) |
44 | 11, 43 | rexlimi 2426 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝐴 ((𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun ◡𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢))) |
45 | 5, 44 | syl 14 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ ∃𝑥 ∈ 𝐴 𝑢 = 𝐵) → ((Fun 𝑢 ∧ Fun ◡𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢))) |
46 | 4, 45 | sylan2b 271 |
. . . . . . . 8
⊢
((∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ 𝑢 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) → ((Fun 𝑢 ∧ Fun ◡𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢))) |
47 | 46 | ralrimiva 2392 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → ∀𝑢 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ((Fun 𝑢 ∧ Fun ◡𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢))) |
48 | | fun11uni 4969 |
. . . . . . 7
⊢
(∀𝑢 ∈
{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ((Fun 𝑢 ∧ Fun ◡𝑢) ∧ ∀𝑣 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} (𝑢 ⊆ 𝑣 ∨ 𝑣 ⊆ 𝑢)) → (Fun ∪
{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ∧ Fun ◡∪ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵})) |
49 | 47, 48 | syl 14 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → (Fun ∪
{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ∧ Fun ◡∪ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵})) |
50 | 49 | simpld 105 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → Fun ∪
{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) |
51 | | fun11iun.2 |
. . . . . . 7
⊢ 𝐵 ∈ V |
52 | 51 | dfiun2 3691 |
. . . . . 6
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} |
53 | 52 | funeqi 4922 |
. . . . 5
⊢ (Fun
∪ 𝑥 ∈ 𝐴 𝐵 ↔ Fun ∪
{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) |
54 | 50, 53 | sylibr 137 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → Fun ∪ 𝑥 ∈ 𝐴 𝐵) |
55 | | nfra1 2355 |
. . . . . . 7
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) |
56 | | rsp 2369 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → (𝑥 ∈ 𝐴 → (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)))) |
57 | 1 | eldm2 4533 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ dom 𝐵 ↔ ∃𝑣〈𝑢, 𝑣〉 ∈ 𝐵) |
58 | | f1dm 5096 |
. . . . . . . . . . . 12
⊢ (𝐵:𝐷–1-1→𝑆 → dom 𝐵 = 𝐷) |
59 | 58 | eleq2d 2107 |
. . . . . . . . . . 11
⊢ (𝐵:𝐷–1-1→𝑆 → (𝑢 ∈ dom 𝐵 ↔ 𝑢 ∈ 𝐷)) |
60 | 57, 59 | syl5bbr 183 |
. . . . . . . . . 10
⊢ (𝐵:𝐷–1-1→𝑆 → (∃𝑣〈𝑢, 𝑣〉 ∈ 𝐵 ↔ 𝑢 ∈ 𝐷)) |
61 | 60 | adantr 261 |
. . . . . . . . 9
⊢ ((𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → (∃𝑣〈𝑢, 𝑣〉 ∈ 𝐵 ↔ 𝑢 ∈ 𝐷)) |
62 | 56, 61 | syl6 29 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → (𝑥 ∈ 𝐴 → (∃𝑣〈𝑢, 𝑣〉 ∈ 𝐵 ↔ 𝑢 ∈ 𝐷))) |
63 | 62 | imp 115 |
. . . . . . 7
⊢
((∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (∃𝑣〈𝑢, 𝑣〉 ∈ 𝐵 ↔ 𝑢 ∈ 𝐷)) |
64 | 55, 63 | rexbida 2321 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → (∃𝑥 ∈ 𝐴 ∃𝑣〈𝑢, 𝑣〉 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑢 ∈ 𝐷)) |
65 | | eliun 3661 |
. . . . . . . 8
⊢
(〈𝑢, 𝑣〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 〈𝑢, 𝑣〉 ∈ 𝐵) |
66 | 65 | exbii 1496 |
. . . . . . 7
⊢
(∃𝑣〈𝑢, 𝑣〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑣∃𝑥 ∈ 𝐴 〈𝑢, 𝑣〉 ∈ 𝐵) |
67 | 1 | eldm2 4533 |
. . . . . . 7
⊢ (𝑢 ∈ dom ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑣〈𝑢, 𝑣〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) |
68 | | rexcom4 2577 |
. . . . . . 7
⊢
(∃𝑥 ∈
𝐴 ∃𝑣〈𝑢, 𝑣〉 ∈ 𝐵 ↔ ∃𝑣∃𝑥 ∈ 𝐴 〈𝑢, 𝑣〉 ∈ 𝐵) |
69 | 66, 67, 68 | 3bitr4i 201 |
. . . . . 6
⊢ (𝑢 ∈ dom ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 ∃𝑣〈𝑢, 𝑣〉 ∈ 𝐵) |
70 | | eliun 3661 |
. . . . . 6
⊢ (𝑢 ∈ ∪ 𝑥 ∈ 𝐴 𝐷 ↔ ∃𝑥 ∈ 𝐴 𝑢 ∈ 𝐷) |
71 | 64, 69, 70 | 3bitr4g 212 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → (𝑢 ∈ dom ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑢 ∈ ∪
𝑥 ∈ 𝐴 𝐷)) |
72 | 71 | eqrdv 2038 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → dom ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐷) |
73 | | df-fn 4905 |
. . . 4
⊢ (∪ 𝑥 ∈ 𝐴 𝐵 Fn ∪
𝑥 ∈ 𝐴 𝐷 ↔ (Fun ∪ 𝑥 ∈ 𝐴 𝐵 ∧ dom ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐷)) |
74 | 54, 72, 73 | sylanbrc 394 |
. . 3
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → ∪ 𝑥 ∈ 𝐴 𝐵 Fn ∪
𝑥 ∈ 𝐴 𝐷) |
75 | | rniun 4734 |
. . . 4
⊢ ran
∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ran 𝐵 |
76 | | f1f 5092 |
. . . . . . . 8
⊢ (𝐵:𝐷–1-1→𝑆 → 𝐵:𝐷⟶𝑆) |
77 | | frn 5052 |
. . . . . . . 8
⊢ (𝐵:𝐷⟶𝑆 → ran 𝐵 ⊆ 𝑆) |
78 | 76, 77 | syl 14 |
. . . . . . 7
⊢ (𝐵:𝐷–1-1→𝑆 → ran 𝐵 ⊆ 𝑆) |
79 | 78 | adantr 261 |
. . . . . 6
⊢ ((𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → ran 𝐵 ⊆ 𝑆) |
80 | 79 | ralimi 2384 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → ∀𝑥 ∈ 𝐴 ran 𝐵 ⊆ 𝑆) |
81 | | iunss 3698 |
. . . . 5
⊢ (∪ 𝑥 ∈ 𝐴 ran 𝐵 ⊆ 𝑆 ↔ ∀𝑥 ∈ 𝐴 ran 𝐵 ⊆ 𝑆) |
82 | 80, 81 | sylibr 137 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → ∪ 𝑥 ∈ 𝐴 ran 𝐵 ⊆ 𝑆) |
83 | 75, 82 | syl5eqss 2989 |
. . 3
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → ran ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑆) |
84 | | df-f 4906 |
. . 3
⊢ (∪ 𝑥 ∈ 𝐴 𝐵:∪ 𝑥 ∈ 𝐴 𝐷⟶𝑆 ↔ (∪
𝑥 ∈ 𝐴 𝐵 Fn ∪
𝑥 ∈ 𝐴 𝐷 ∧ ran ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝑆)) |
85 | 74, 83, 84 | sylanbrc 394 |
. 2
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → ∪ 𝑥 ∈ 𝐴 𝐵:∪ 𝑥 ∈ 𝐴 𝐷⟶𝑆) |
86 | 49 | simprd 107 |
. . 3
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → Fun ◡∪ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) |
87 | 52 | cnveqi 4510 |
. . . 4
⊢ ◡∪ 𝑥 ∈ 𝐴 𝐵 = ◡∪ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} |
88 | 87 | funeqi 4922 |
. . 3
⊢ (Fun
◡∪
𝑥 ∈ 𝐴 𝐵 ↔ Fun ◡∪ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) |
89 | 86, 88 | sylibr 137 |
. 2
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → Fun ◡∪ 𝑥 ∈ 𝐴 𝐵) |
90 | | df-f1 4907 |
. 2
⊢ (∪ 𝑥 ∈ 𝐴 𝐵:∪ 𝑥 ∈ 𝐴 𝐷–1-1→𝑆 ↔ (∪
𝑥 ∈ 𝐴 𝐵:∪ 𝑥 ∈ 𝐴 𝐷⟶𝑆 ∧ Fun ◡∪ 𝑥 ∈ 𝐴 𝐵)) |
91 | 85, 89, 90 | sylanbrc 394 |
1
⊢
(∀𝑥 ∈
𝐴 (𝐵:𝐷–1-1→𝑆 ∧ ∀𝑦 ∈ 𝐴 (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) → ∪ 𝑥 ∈ 𝐴 𝐵:∪ 𝑥 ∈ 𝐴 𝐷–1-1→𝑆) |