![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1stcof | GIF version |
Description: Composition of the first member function with another function. (Contributed by NM, 12-Oct-2007.) |
Ref | Expression |
---|---|
1stcof | ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st ∘ 𝐹):𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo1st 5784 | . . . 4 ⊢ 1st :V–onto→V | |
2 | fofn 5108 | . . . 4 ⊢ (1st :V–onto→V → 1st Fn V) | |
3 | 1, 2 | ax-mp 7 | . . 3 ⊢ 1st Fn V |
4 | ffn 5046 | . . . 4 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹 Fn 𝐴) | |
5 | dffn2 5047 | . . . 4 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶V) | |
6 | 4, 5 | sylib 127 | . . 3 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → 𝐹:𝐴⟶V) |
7 | fnfco 5065 | . . 3 ⊢ ((1st Fn V ∧ 𝐹:𝐴⟶V) → (1st ∘ 𝐹) Fn 𝐴) | |
8 | 3, 6, 7 | sylancr 393 | . 2 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st ∘ 𝐹) Fn 𝐴) |
9 | rnco 4827 | . . 3 ⊢ ran (1st ∘ 𝐹) = ran (1st ↾ ran 𝐹) | |
10 | frn 5052 | . . . . 5 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran 𝐹 ⊆ (𝐵 × 𝐶)) | |
11 | ssres2 4638 | . . . . 5 ⊢ (ran 𝐹 ⊆ (𝐵 × 𝐶) → (1st ↾ ran 𝐹) ⊆ (1st ↾ (𝐵 × 𝐶))) | |
12 | rnss 4564 | . . . . 5 ⊢ ((1st ↾ ran 𝐹) ⊆ (1st ↾ (𝐵 × 𝐶)) → ran (1st ↾ ran 𝐹) ⊆ ran (1st ↾ (𝐵 × 𝐶))) | |
13 | 10, 11, 12 | 3syl 17 | . . . 4 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st ↾ ran 𝐹) ⊆ ran (1st ↾ (𝐵 × 𝐶))) |
14 | f1stres 5786 | . . . . 5 ⊢ (1st ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐵 | |
15 | frn 5052 | . . . . 5 ⊢ ((1st ↾ (𝐵 × 𝐶)):(𝐵 × 𝐶)⟶𝐵 → ran (1st ↾ (𝐵 × 𝐶)) ⊆ 𝐵) | |
16 | 14, 15 | ax-mp 7 | . . . 4 ⊢ ran (1st ↾ (𝐵 × 𝐶)) ⊆ 𝐵 |
17 | 13, 16 | syl6ss 2957 | . . 3 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st ↾ ran 𝐹) ⊆ 𝐵) |
18 | 9, 17 | syl5eqss 2989 | . 2 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → ran (1st ∘ 𝐹) ⊆ 𝐵) |
19 | df-f 4906 | . 2 ⊢ ((1st ∘ 𝐹):𝐴⟶𝐵 ↔ ((1st ∘ 𝐹) Fn 𝐴 ∧ ran (1st ∘ 𝐹) ⊆ 𝐵)) | |
20 | 8, 18, 19 | sylanbrc 394 | 1 ⊢ (𝐹:𝐴⟶(𝐵 × 𝐶) → (1st ∘ 𝐹):𝐴⟶𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Vcvv 2557 ⊆ wss 2917 × cxp 4343 ran crn 4346 ↾ cres 4347 ∘ ccom 4349 Fn wfn 4897 ⟶wf 4898 –onto→wfo 4900 1st c1st 5765 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-sbc 2765 df-csb 2853 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-iun 3659 df-br 3765 df-opab 3819 df-mpt 3820 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-fo 4908 df-fv 4910 df-1st 5767 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |