Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssres2 GIF version

Theorem ssres2 4638
 Description: Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ssres2 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))

Proof of Theorem ssres2
StepHypRef Expression
1 xpss1 4448 . . 3 (𝐴𝐵 → (𝐴 × V) ⊆ (𝐵 × V))
2 sslin 3163 . . 3 ((𝐴 × V) ⊆ (𝐵 × V) → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V)))
31, 2syl 14 . 2 (𝐴𝐵 → (𝐶 ∩ (𝐴 × V)) ⊆ (𝐶 ∩ (𝐵 × V)))
4 df-res 4357 . 2 (𝐶𝐴) = (𝐶 ∩ (𝐴 × V))
5 df-res 4357 . 2 (𝐶𝐵) = (𝐶 ∩ (𝐵 × V))
63, 4, 53sstr4g 2986 1 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4  Vcvv 2557   ∩ cin 2916   ⊆ wss 2917   × cxp 4343   ↾ cres 4347 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-in 2924  df-ss 2931  df-opab 3819  df-xp 4351  df-res 4357 This theorem is referenced by:  imass2  4701  resasplitss  5069  1stcof  5790  2ndcof  5791
 Copyright terms: Public domain W3C validator