ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6ss GIF version

Theorem syl6ss 2957
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
syl6ss.1 (𝜑𝐴𝐵)
syl6ss.2 𝐵𝐶
Assertion
Ref Expression
syl6ss (𝜑𝐴𝐶)

Proof of Theorem syl6ss
StepHypRef Expression
1 syl6ss.1 . 2 (𝜑𝐴𝐵)
2 syl6ss.2 . . 3 𝐵𝐶
32a1i 9 . 2 (𝜑𝐵𝐶)
41, 3sstrd 2955 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 2917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-in 2924  df-ss 2931
This theorem is referenced by:  difss2  3072  sstpr  3528  rintm  3744  eqbrrdva  4505  ssxpbm  4756  ssxp1  4757  ssxp2  4758  relfld  4846  funssxp  5060  dff2  5311  fliftf  5439  1stcof  5790  2ndcof  5791  tfrlemibfn  5942  sucinc2  6026  peano5nnnn  6964  peano5nni  7915  ioodisj  8859  fzossnn0  9029  elfzom1elp1fzo  9056  frecuzrdgfn  9172  peano5set  10038  peano5setOLD  10039
  Copyright terms: Public domain W3C validator