ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssxp2 GIF version

Theorem ssxp2 4758
Description: Cross product subset cancellation. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
ssxp2 (∃𝑥 𝑥𝐶 → ((𝐶 × 𝐴) ⊆ (𝐶 × 𝐵) ↔ 𝐴𝐵))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem ssxp2
StepHypRef Expression
1 rnxpm 4752 . . . . . 6 (∃𝑥 𝑥𝐶 → ran (𝐶 × 𝐴) = 𝐴)
21adantr 261 . . . . 5 ((∃𝑥 𝑥𝐶 ∧ (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) → ran (𝐶 × 𝐴) = 𝐴)
3 rnss 4564 . . . . . 6 ((𝐶 × 𝐴) ⊆ (𝐶 × 𝐵) → ran (𝐶 × 𝐴) ⊆ ran (𝐶 × 𝐵))
43adantl 262 . . . . 5 ((∃𝑥 𝑥𝐶 ∧ (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) → ran (𝐶 × 𝐴) ⊆ ran (𝐶 × 𝐵))
52, 4eqsstr3d 2980 . . . 4 ((∃𝑥 𝑥𝐶 ∧ (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) → 𝐴 ⊆ ran (𝐶 × 𝐵))
6 rnxpss 4754 . . . 4 ran (𝐶 × 𝐵) ⊆ 𝐵
75, 6syl6ss 2957 . . 3 ((∃𝑥 𝑥𝐶 ∧ (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵)) → 𝐴𝐵)
87ex 108 . 2 (∃𝑥 𝑥𝐶 → ((𝐶 × 𝐴) ⊆ (𝐶 × 𝐵) → 𝐴𝐵))
9 xpss2 4449 . 2 (𝐴𝐵 → (𝐶 × 𝐴) ⊆ (𝐶 × 𝐵))
108, 9impbid1 130 1 (∃𝑥 𝑥𝐶 → ((𝐶 × 𝐴) ⊆ (𝐶 × 𝐵) ↔ 𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98   = wceq 1243  wex 1381  wcel 1393  wss 2917   × cxp 4343  ran crn 4346
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-cnv 4353  df-dm 4355  df-rn 4356
This theorem is referenced by:  xpcanm  4760
  Copyright terms: Public domain W3C validator