ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssxp1 Structured version   GIF version

Theorem ssxp1 4700
Description: Cross product subset cancellation. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
ssxp1 (x x 𝐶 → ((A × 𝐶) ⊆ (B × 𝐶) ↔ AB))
Distinct variable group:   x,𝐶
Allowed substitution hints:   A(x)   B(x)

Proof of Theorem ssxp1
StepHypRef Expression
1 dmxpm 4498 . . . . . 6 (x x 𝐶 → dom (A × 𝐶) = A)
21adantr 261 . . . . 5 ((x x 𝐶 (A × 𝐶) ⊆ (B × 𝐶)) → dom (A × 𝐶) = A)
3 dmss 4477 . . . . . 6 ((A × 𝐶) ⊆ (B × 𝐶) → dom (A × 𝐶) ⊆ dom (B × 𝐶))
43adantl 262 . . . . 5 ((x x 𝐶 (A × 𝐶) ⊆ (B × 𝐶)) → dom (A × 𝐶) ⊆ dom (B × 𝐶))
52, 4eqsstr3d 2974 . . . 4 ((x x 𝐶 (A × 𝐶) ⊆ (B × 𝐶)) → A ⊆ dom (B × 𝐶))
6 dmxpss 4696 . . . 4 dom (B × 𝐶) ⊆ B
75, 6syl6ss 2951 . . 3 ((x x 𝐶 (A × 𝐶) ⊆ (B × 𝐶)) → AB)
87ex 108 . 2 (x x 𝐶 → ((A × 𝐶) ⊆ (B × 𝐶) → AB))
9 xpss1 4391 . 2 (AB → (A × 𝐶) ⊆ (B × 𝐶))
108, 9impbid1 130 1 (x x 𝐶 → ((A × 𝐶) ⊆ (B × 𝐶) ↔ AB))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98   = wceq 1242  wex 1378   wcel 1390  wss 2911   × cxp 4286  dom cdm 4288
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-xp 4294  df-dm 4298
This theorem is referenced by:  xpcan2m  4704
  Copyright terms: Public domain W3C validator