Step | Hyp | Ref
| Expression |
1 | | xpm 4745 |
. . . . . . . 8
⊢
((∃𝑎 𝑎 ∈ 𝐴 ∧ ∃𝑏 𝑏 ∈ 𝐵) ↔ ∃𝑥 𝑥 ∈ (𝐴 × 𝐵)) |
2 | | dmxpm 4555 |
. . . . . . . . 9
⊢
(∃𝑏 𝑏 ∈ 𝐵 → dom (𝐴 × 𝐵) = 𝐴) |
3 | 2 | adantl 262 |
. . . . . . . 8
⊢
((∃𝑎 𝑎 ∈ 𝐴 ∧ ∃𝑏 𝑏 ∈ 𝐵) → dom (𝐴 × 𝐵) = 𝐴) |
4 | 1, 3 | sylbir 125 |
. . . . . . 7
⊢
(∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → dom (𝐴 × 𝐵) = 𝐴) |
5 | 4 | adantr 261 |
. . . . . 6
⊢
((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → dom (𝐴 × 𝐵) = 𝐴) |
6 | | dmss 4534 |
. . . . . . 7
⊢ ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) → dom (𝐴 × 𝐵) ⊆ dom (𝐶 × 𝐷)) |
7 | 6 | adantl 262 |
. . . . . 6
⊢
((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → dom (𝐴 × 𝐵) ⊆ dom (𝐶 × 𝐷)) |
8 | 5, 7 | eqsstr3d 2980 |
. . . . 5
⊢
((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → 𝐴 ⊆ dom (𝐶 × 𝐷)) |
9 | | dmxpss 4753 |
. . . . 5
⊢ dom
(𝐶 × 𝐷) ⊆ 𝐶 |
10 | 8, 9 | syl6ss 2957 |
. . . 4
⊢
((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → 𝐴 ⊆ 𝐶) |
11 | | rnxpm 4752 |
. . . . . . . . 9
⊢
(∃𝑎 𝑎 ∈ 𝐴 → ran (𝐴 × 𝐵) = 𝐵) |
12 | 11 | adantr 261 |
. . . . . . . 8
⊢
((∃𝑎 𝑎 ∈ 𝐴 ∧ ∃𝑏 𝑏 ∈ 𝐵) → ran (𝐴 × 𝐵) = 𝐵) |
13 | 1, 12 | sylbir 125 |
. . . . . . 7
⊢
(∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → ran (𝐴 × 𝐵) = 𝐵) |
14 | 13 | adantr 261 |
. . . . . 6
⊢
((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → ran (𝐴 × 𝐵) = 𝐵) |
15 | | rnss 4564 |
. . . . . . 7
⊢ ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) → ran (𝐴 × 𝐵) ⊆ ran (𝐶 × 𝐷)) |
16 | 15 | adantl 262 |
. . . . . 6
⊢
((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → ran (𝐴 × 𝐵) ⊆ ran (𝐶 × 𝐷)) |
17 | 14, 16 | eqsstr3d 2980 |
. . . . 5
⊢
((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → 𝐵 ⊆ ran (𝐶 × 𝐷)) |
18 | | rnxpss 4754 |
. . . . 5
⊢ ran
(𝐶 × 𝐷) ⊆ 𝐷 |
19 | 17, 18 | syl6ss 2957 |
. . . 4
⊢
((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → 𝐵 ⊆ 𝐷) |
20 | 10, 19 | jca 290 |
. . 3
⊢
((∃𝑥 𝑥 ∈ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷)) |
21 | 20 | ex 108 |
. 2
⊢
(∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷))) |
22 | | xpss12 4445 |
. 2
⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) → (𝐴 × 𝐵) ⊆ (𝐶 × 𝐷)) |
23 | 21, 22 | impbid1 130 |
1
⊢
(∃𝑥 𝑥 ∈ (𝐴 × 𝐵) → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷))) |