ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-opab Structured version   GIF version

Definition df-opab 3789
Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually x and y are distinct, although the definition doesn't strictly require it. The brace notation is called "class abstraction" by Quine; it is also (more commonly) called a "class builder" in the literature. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-opab {⟨x, y⟩ ∣ φ} = {zxy(z = ⟨x, y φ)}
Distinct variable groups:   x,z   y,z   φ,z
Allowed substitution hints:   φ(x,y)

Detailed syntax breakdown of Definition df-opab
StepHypRef Expression
1 wph . . 3 wff φ
2 vx . . 3 setvar x
3 vy . . 3 setvar y
41, 2, 3copab 3787 . 2 class {⟨x, y⟩ ∣ φ}
5 vz . . . . . . . 8 setvar z
65cv 1225 . . . . . . 7 class z
72cv 1225 . . . . . . . 8 class x
83cv 1225 . . . . . . . 8 class y
97, 8cop 3349 . . . . . . 7 class x, y
106, 9wceq 1226 . . . . . 6 wff z = ⟨x, y
1110, 1wa 97 . . . . 5 wff (z = ⟨x, y φ)
1211, 3wex 1358 . . . 4 wff y(z = ⟨x, y φ)
1312, 2wex 1358 . . 3 wff xy(z = ⟨x, y φ)
1413, 5cab 2004 . 2 class {zxy(z = ⟨x, y φ)}
154, 14wceq 1226 1 wff {⟨x, y⟩ ∣ φ} = {zxy(z = ⟨x, y φ)}
Colors of variables: wff set class
This definition is referenced by:  opabss  3791  opabbid  3792  nfopab  3795  nfopab1  3796  nfopab2  3797  cbvopab  3798  cbvopab1  3800  cbvopab2  3801  cbvopab1s  3802  cbvopab2v  3804  unopab  3806  opabid  3964  elopab  3965  ssopab2  3982  iunopab  3988  elxpi  4284  rabxp  4303  csbxpg  4344  relopabi  4386  opabbrex  5468  dfoprab2  5471  dmoprab  5504  dfopab2  5734
  Copyright terms: Public domain W3C validator