ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-opab Structured version   GIF version

Definition df-opab 3810
Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually x and y are distinct, although the definition doesn't strictly require it. The brace notation is called "class abstraction" by Quine; it is also (more commonly) called a "class builder" in the literature. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
df-opab {⟨x, y⟩ ∣ φ} = {zxy(z = ⟨x, y φ)}
Distinct variable groups:   x,z   y,z   φ,z
Allowed substitution hints:   φ(x,y)

Detailed syntax breakdown of Definition df-opab
StepHypRef Expression
1 wph . . 3 wff φ
2 vx . . 3 setvar x
3 vy . . 3 setvar y
41, 2, 3copab 3808 . 2 class {⟨x, y⟩ ∣ φ}
5 vz . . . . . . . 8 setvar z
65cv 1241 . . . . . . 7 class z
72cv 1241 . . . . . . . 8 class x
83cv 1241 . . . . . . . 8 class y
97, 8cop 3370 . . . . . . 7 class x, y
106, 9wceq 1242 . . . . . 6 wff z = ⟨x, y
1110, 1wa 97 . . . . 5 wff (z = ⟨x, y φ)
1211, 3wex 1378 . . . 4 wff y(z = ⟨x, y φ)
1312, 2wex 1378 . . 3 wff xy(z = ⟨x, y φ)
1413, 5cab 2023 . 2 class {zxy(z = ⟨x, y φ)}
154, 14wceq 1242 1 wff {⟨x, y⟩ ∣ φ} = {zxy(z = ⟨x, y φ)}
Colors of variables: wff set class
This definition is referenced by:  opabss  3812  opabbid  3813  nfopab  3816  nfopab1  3817  nfopab2  3818  cbvopab  3819  cbvopab1  3821  cbvopab2  3822  cbvopab1s  3823  cbvopab2v  3825  unopab  3827  opabid  3985  elopab  3986  ssopab2  4003  iunopab  4009  elxpi  4304  rabxp  4323  csbxpg  4364  relopabi  4406  opabbrex  5491  dfoprab2  5494  dmoprab  5527  dfopab2  5757
  Copyright terms: Public domain W3C validator