ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfopab2 GIF version

Theorem dfopab2 5815
Description: A way to define an ordered-pair class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfopab2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∈ (V × V) ∣ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑}
Distinct variable groups:   𝜑,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem dfopab2
StepHypRef Expression
1 nfsbc1v 2782 . . . . 5 𝑥[(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑
2119.41 1576 . . . 4 (∃𝑥(∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑) ↔ (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑))
3 sbcopeq1a 5813 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → ([(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑𝜑))
43pm5.32i 427 . . . . . . 7 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
54exbii 1496 . . . . . 6 (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
6 nfcv 2178 . . . . . . . 8 𝑦(1st𝑧)
7 nfsbc1v 2782 . . . . . . . 8 𝑦[(2nd𝑧) / 𝑦]𝜑
86, 7nfsbc 2784 . . . . . . 7 𝑦[(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑
9819.41 1576 . . . . . 6 (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑) ↔ (∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑))
105, 9bitr3i 175 . . . . 5 (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑))
1110exbii 1496 . . . 4 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥(∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑))
12 elvv 4402 . . . . 5 (𝑧 ∈ (V × V) ↔ ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩)
1312anbi1i 431 . . . 4 ((𝑧 ∈ (V × V) ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑) ↔ (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑))
142, 11, 133bitr4i 201 . . 3 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑧 ∈ (V × V) ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑))
1514abbii 2153 . 2 {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑧 ∣ (𝑧 ∈ (V × V) ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑)}
16 df-opab 3819 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
17 df-rab 2315 . 2 {𝑧 ∈ (V × V) ∣ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑} = {𝑧 ∣ (𝑧 ∈ (V × V) ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑)}
1815, 16, 173eqtr4i 2070 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∈ (V × V) ∣ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑}
Colors of variables: wff set class
Syntax hints:  wa 97   = wceq 1243  wex 1381  wcel 1393  {cab 2026  {crab 2310  Vcvv 2557  [wsbc 2764  cop 3378  {copab 3817   × cxp 4343  cfv 4902  1st c1st 5765  2nd c2nd 5766
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-iota 4867  df-fun 4904  df-fv 4910  df-1st 5767  df-2nd 5768
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator