![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr3i | GIF version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr3i.1 | ⊢ (𝜓 ↔ 𝜑) |
bitr3i.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
bitr3i | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3i.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | bicomi 123 | . 2 ⊢ (𝜑 ↔ 𝜓) |
3 | bitr3i.2 | . 2 ⊢ (𝜓 ↔ 𝜒) | |
4 | 2, 3 | bitri 173 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 98 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: 3bitrri 196 3bitr3i 199 3bitr3ri 200 anandi 524 anandir 525 xchnxbi 605 orordi 690 orordir 691 sbco3v 1843 elsb3 1852 elsb4 1853 sbco4 1883 abeq1i 2149 r19.41 2465 rexcom4a 2578 moeq 2716 mosubt 2718 2reuswapdc 2743 nfcdeq 2761 sbcid 2779 sbcco2 2786 sbc7 2790 sbcie2g 2796 eqsbc3 2802 sbcralt 2834 sbcrext 2835 cbvralcsf 2908 cbvrexcsf 2909 cbvrabcsf 2911 abss 3009 ssab 3010 difrab 3211 prsspw 3536 brab1 3809 unopab 3836 exss 3963 uniuni 4183 elvvv 4403 eliunxp 4475 ralxp 4479 rexxp 4480 opelco 4507 reldm0 4553 resieq 4622 resiexg 4653 iss 4654 imai 4681 cnvsym 4708 intasym 4709 asymref 4710 codir 4713 poirr2 4717 rninxp 4764 cnvsom 4861 funopg 4934 fin 5076 f1cnvcnv 5100 fndmin 5274 resoprab 5597 mpt22eqb 5610 ov6g 5638 offval 5719 dfopab2 5815 dfoprab3s 5816 fmpt2x 5826 brtpos0 5867 dftpos3 5877 tpostpos 5879 ercnv 6127 xpcomco 6300 xpassen 6304 phpm 6327 elni2 6412 elfz2nn0 8973 elfzmlbp 8990 expival 9257 clim0 9806 |
Copyright terms: Public domain | W3C validator |