Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbopeq1a GIF version

Theorem csbopeq1a 5814
 Description: Equality theorem for substitution of a class 𝐴 for an ordered pair ⟨𝑥, 𝑦⟩ in 𝐵 (analog of csbeq1a 2860). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
csbopeq1a (𝐴 = ⟨𝑥, 𝑦⟩ → (1st𝐴) / 𝑥(2nd𝐴) / 𝑦𝐵 = 𝐵)

Proof of Theorem csbopeq1a
StepHypRef Expression
1 vex 2560 . . . . 5 𝑥 ∈ V
2 vex 2560 . . . . 5 𝑦 ∈ V
31, 2op2ndd 5776 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (2nd𝐴) = 𝑦)
43eqcomd 2045 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑦 = (2nd𝐴))
5 csbeq1a 2860 . . 3 (𝑦 = (2nd𝐴) → 𝐵 = (2nd𝐴) / 𝑦𝐵)
64, 5syl 14 . 2 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐵 = (2nd𝐴) / 𝑦𝐵)
71, 2op1std 5775 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (1st𝐴) = 𝑥)
87eqcomd 2045 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑥 = (1st𝐴))
9 csbeq1a 2860 . . 3 (𝑥 = (1st𝐴) → (2nd𝐴) / 𝑦𝐵 = (1st𝐴) / 𝑥(2nd𝐴) / 𝑦𝐵)
108, 9syl 14 . 2 (𝐴 = ⟨𝑥, 𝑦⟩ → (2nd𝐴) / 𝑦𝐵 = (1st𝐴) / 𝑥(2nd𝐴) / 𝑦𝐵)
116, 10eqtr2d 2073 1 (𝐴 = ⟨𝑥, 𝑦⟩ → (1st𝐴) / 𝑥(2nd𝐴) / 𝑦𝐵 = 𝐵)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1243  ⦋csb 2852  ⟨cop 3378  ‘cfv 4902  1st c1st 5765  2nd c2nd 5766 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-iota 4867  df-fun 4904  df-fv 4910  df-1st 5767  df-2nd 5768 This theorem is referenced by:  dfmpt2  5844
 Copyright terms: Public domain W3C validator