Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbopeq1a | GIF version |
Description: Equality theorem for substitution of a class 𝐴 for an ordered pair 〈𝑥, 𝑦〉 in 𝐵 (analog of csbeq1a 2860). (Contributed by NM, 19-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
csbopeq1a | ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ⦋(1st ‘𝐴) / 𝑥⦌⦋(2nd ‘𝐴) / 𝑦⦌𝐵 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2560 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | vex 2560 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | op2ndd 5776 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (2nd ‘𝐴) = 𝑦) |
4 | 3 | eqcomd 2045 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝑦 = (2nd ‘𝐴)) |
5 | csbeq1a 2860 | . . 3 ⊢ (𝑦 = (2nd ‘𝐴) → 𝐵 = ⦋(2nd ‘𝐴) / 𝑦⦌𝐵) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝐵 = ⦋(2nd ‘𝐴) / 𝑦⦌𝐵) |
7 | 1, 2 | op1std 5775 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (1st ‘𝐴) = 𝑥) |
8 | 7 | eqcomd 2045 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → 𝑥 = (1st ‘𝐴)) |
9 | csbeq1a 2860 | . . 3 ⊢ (𝑥 = (1st ‘𝐴) → ⦋(2nd ‘𝐴) / 𝑦⦌𝐵 = ⦋(1st ‘𝐴) / 𝑥⦌⦋(2nd ‘𝐴) / 𝑦⦌𝐵) | |
10 | 8, 9 | syl 14 | . 2 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ⦋(2nd ‘𝐴) / 𝑦⦌𝐵 = ⦋(1st ‘𝐴) / 𝑥⦌⦋(2nd ‘𝐴) / 𝑦⦌𝐵) |
11 | 6, 10 | eqtr2d 2073 | 1 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ⦋(1st ‘𝐴) / 𝑥⦌⦋(2nd ‘𝐴) / 𝑦⦌𝐵 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 ⦋csb 2852 〈cop 3378 ‘cfv 4902 1st c1st 5765 2nd c2nd 5766 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-sbc 2765 df-csb 2853 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-mpt 3820 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-iota 4867 df-fun 4904 df-fv 4910 df-1st 5767 df-2nd 5768 |
This theorem is referenced by: dfmpt2 5844 |
Copyright terms: Public domain | W3C validator |