Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-11 GIF version

Axiom ax-11 1397
 Description: Axiom of Variable Substitution. One of the 5 equality axioms of predicate calculus. The final consequent ∀𝑥(𝑥 = 𝑦 → 𝜑) is a way of expressing "𝑦 substituted for 𝑥 in wff 𝜑 " (cf. sb6 1766). It is based on Lemma 16 of [Tarski] p. 70 and Axiom C8 of [Monk2] p. 105, from which it can be proved by cases. Variants of this axiom which are equivalent in classical logic but which have not been shown to be equivalent for intuitionistic logic are ax11v 1708, ax11v2 1701 and ax-11o 1704. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
ax-11 (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))

Detailed syntax breakdown of Axiom ax-11
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 vy . . 3 setvar 𝑦
31, 2weq 1392 . 2 wff 𝑥 = 𝑦
4 wph . . . 4 wff 𝜑
54, 2wal 1241 . . 3 wff 𝑦𝜑
63, 4wi 4 . . . 4 wff (𝑥 = 𝑦𝜑)
76, 1wal 1241 . . 3 wff 𝑥(𝑥 = 𝑦𝜑)
85, 7wi 4 . 2 wff (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))
93, 8wi 4 1 wff (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
 Colors of variables: wff set class This axiom is referenced by:  ax10o  1603  equs5a  1675  sbcof2  1691  ax11o  1703  ax11v  1708
 Copyright terms: Public domain W3C validator