 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax10o Structured version   GIF version

Theorem ax10o 1600
 Description: Show that ax-10o 1601 can be derived from ax-10 1393. An open problem is whether this theorem can be derived from ax-10 1393 and the others when ax-11 1394 is replaced with ax-11o 1701. See theorem ax10 1602 for the rederivation of ax-10 1393 from ax10o 1600. Normally, ax10o 1600 should be used rather than ax-10o 1601, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.)
Assertion
Ref Expression
ax10o (x x = y → (xφyφ))

Proof of Theorem ax10o
StepHypRef Expression
1 ax-10 1393 . 2 (x x = yy y = x)
2 ax-11 1394 . . . 4 (y = x → (xφy(y = xφ)))
32equcoms 1591 . . 3 (x = y → (xφy(y = xφ)))
43sps 1427 . 2 (x x = y → (xφy(y = xφ)))
5 pm2.27 35 . . 3 (y = x → ((y = xφ) → φ))
65al2imi 1344 . 2 (y y = x → (y(y = xφ) → yφ))
71, 4, 6sylsyld 52 1 (x x = y → (xφyφ))
 Colors of variables: wff set class Syntax hints:   → wi 4  ∀wal 1240 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-5 1333  ax-gen 1335  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-4 1397  ax-17 1416  ax-i9 1420 This theorem depends on definitions:  df-bi 110 This theorem is referenced by:  hbae  1603  dral1  1615
 Copyright terms: Public domain W3C validator