Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-v | GIF version |
Description: Define the universal class. Definition 5.20 of [TakeutiZaring] p. 21. Also Definition 2.9 of [Quine] p. 19. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
df-v | ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvv 2557 | . 2 class V | |
2 | vx | . . . 4 setvar 𝑥 | |
3 | 2, 2 | weq 1392 | . . 3 wff 𝑥 = 𝑥 |
4 | 3, 2 | cab 2026 | . 2 class {𝑥 ∣ 𝑥 = 𝑥} |
5 | 1, 4 | wceq 1243 | 1 wff V = {𝑥 ∣ 𝑥 = 𝑥} |
Colors of variables: wff set class |
This definition is referenced by: vex 2560 int0 3629 ruv 4274 |
Copyright terms: Public domain | W3C validator |