![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ruv | GIF version |
Description: The Russell class is equal to the universe V. Exercise 5 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 4-Oct-2008.) |
Ref | Expression |
---|---|
ruv | ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-v 2559 | . 2 ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} | |
2 | equid 1589 | . . . 4 ⊢ 𝑥 = 𝑥 | |
3 | elirrv 4272 | . . . . 5 ⊢ ¬ 𝑥 ∈ 𝑥 | |
4 | 3 | nelir 2300 | . . . 4 ⊢ 𝑥 ∉ 𝑥 |
5 | 2, 4 | 2th 163 | . . 3 ⊢ (𝑥 = 𝑥 ↔ 𝑥 ∉ 𝑥) |
6 | 5 | abbii 2153 | . 2 ⊢ {𝑥 ∣ 𝑥 = 𝑥} = {𝑥 ∣ 𝑥 ∉ 𝑥} |
7 | 1, 6 | eqtr2i 2061 | 1 ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V |
Colors of variables: wff set class |
Syntax hints: = wceq 1243 {cab 2026 ∉ wnel 2205 Vcvv 2557 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-setind 4262 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-nel 2207 df-ral 2311 df-v 2559 df-dif 2920 df-sn 3381 |
This theorem is referenced by: ruALT 4275 |
Copyright terms: Public domain | W3C validator |