Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  vjust Structured version   GIF version

Theorem vjust 2532
 Description: Soundness justification theorem for df-v 2533. (Contributed by Rodolfo Medina, 27-Apr-2010.)
Assertion
Ref Expression
vjust {xx = x} = {yy = y}

Proof of Theorem vjust
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 equid 1567 . . . . 5 x = x
21sbt 1645 . . . 4 [z / x]x = x
3 equid 1567 . . . . 5 y = y
43sbt 1645 . . . 4 [z / y]y = y
52, 42th 163 . . 3 ([z / x]x = x ↔ [z / y]y = y)
6 df-clab 2005 . . 3 (z {xx = x} ↔ [z / x]x = x)
7 df-clab 2005 . . 3 (z {yy = y} ↔ [z / y]y = y)
85, 6, 73bitr4i 201 . 2 (z {xx = x} ↔ z {yy = y})
98eqriv 2015 1 {xx = x} = {yy = y}
 Colors of variables: wff set class Syntax hints:   = wceq 1226   ∈ wcel 1370  [wsb 1623  {cab 2004 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1312  ax-gen 1314  ax-ie1 1359  ax-ie2 1360  ax-8 1372  ax-4 1377  ax-17 1396  ax-i9 1400  ax-ial 1405  ax-ext 2000 This theorem depends on definitions:  df-bi 110  df-nf 1326  df-sb 1624  df-clab 2005  df-cleq 2011 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator