Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-sep GIF version

Axiom ax-sep 3875
 Description: The Axiom of Separation of IZF set theory. Axiom 6 of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed, and with a Ⅎ𝑦𝜑 condition replaced by a distinct variable constraint between 𝑦 and 𝜑). The Separation Scheme is a weak form of Frege's Axiom of Comprehension, conditioning it (with 𝑥 ∈ 𝑧) so that it asserts the existence of a collection only if it is smaller than some other collection 𝑧 that already exists. This prevents Russell's paradox ru 2763. In some texts, this scheme is called "Aussonderung" or the Subset Axiom. (Contributed by NM, 11-Sep-2006.)
Assertion
Ref Expression
ax-sep 𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧   𝜑,𝑦,𝑧
Allowed substitution hint:   𝜑(𝑥)

Detailed syntax breakdown of Axiom ax-sep
StepHypRef Expression
1 vx . . . . 5 setvar 𝑥
2 vy . . . . 5 setvar 𝑦
31, 2wel 1394 . . . 4 wff 𝑥𝑦
4 vz . . . . . 6 setvar 𝑧
51, 4wel 1394 . . . . 5 wff 𝑥𝑧
6 wph . . . . 5 wff 𝜑
75, 6wa 97 . . . 4 wff (𝑥𝑧𝜑)
83, 7wb 98 . . 3 wff (𝑥𝑦 ↔ (𝑥𝑧𝜑))
98, 1wal 1241 . 2 wff 𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
109, 2wex 1381 1 wff 𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
 Colors of variables: wff set class This axiom is referenced by:  axsep2  3876  zfauscl  3877  bm1.3ii  3878  a9evsep  3879  axnul  3882  nalset  3887
 Copyright terms: Public domain W3C validator