ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-pw Structured version   GIF version

Definition df-pw 3326
Description: Define power class. Definition 5.10 of [TakeutiZaring] p. 17, but we also let it apply to proper classes, i.e. those that are not members of V. When applied to a set, this produces its power set. A power set of S is the set of all subsets of S, including the empty set and S itself. For example, if A is { 3 , 5 , 7 }, then 𝒫 A is { (/) , { 3 } , { 5 } , { 7 } , { 3 , 5 } , { 3 , 7 } , { 5 , 7 } , { 3 , 5 , 7 } }. We will later introduce the Axiom of Power Sets. Still later we will prove that the size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
df-pw 𝒫 A = {xxA}
Distinct variable group:   x,A

Detailed syntax breakdown of Definition df-pw
StepHypRef Expression
1 cA . . 3 class A
21cpw 3324 . 2 class 𝒫 A
3 vx . . . . 5 setvar x
43cv 1223 . . . 4 class x
54, 1wss 2886 . . 3 wff xA
65, 3cab 2000 . 2 class {xxA}
72, 6wceq 1224 1 wff 𝒫 A = {xxA}
Colors of variables: wff set class
This definition is referenced by:  pweq  3327  elpw  3330  nfpw  3336  pwss  3339  pw0  3475  snsspw  3499  pwsnss  3538  pwex  3896  abssexg  3898  iunpw  4150  iotass  4800  bdcpw  8326
  Copyright terms: Public domain W3C validator