![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pwex | GIF version |
Description: Power set axiom expressed in class notation. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
zfpowcl.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
pwex | ⊢ 𝒫 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfpowcl.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | pweq 3362 | . . 3 ⊢ (𝑧 = 𝐴 → 𝒫 𝑧 = 𝒫 𝐴) | |
3 | 2 | eleq1d 2106 | . 2 ⊢ (𝑧 = 𝐴 → (𝒫 𝑧 ∈ V ↔ 𝒫 𝐴 ∈ V)) |
4 | df-pw 3361 | . . 3 ⊢ 𝒫 𝑧 = {𝑦 ∣ 𝑦 ⊆ 𝑧} | |
5 | axpow2 3929 | . . . . . 6 ⊢ ∃𝑥∀𝑦(𝑦 ⊆ 𝑧 → 𝑦 ∈ 𝑥) | |
6 | 5 | bm1.3ii 3878 | . . . . 5 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ⊆ 𝑧) |
7 | abeq2 2146 | . . . . . 6 ⊢ (𝑥 = {𝑦 ∣ 𝑦 ⊆ 𝑧} ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ⊆ 𝑧)) | |
8 | 7 | exbii 1496 | . . . . 5 ⊢ (∃𝑥 𝑥 = {𝑦 ∣ 𝑦 ⊆ 𝑧} ↔ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ⊆ 𝑧)) |
9 | 6, 8 | mpbir 134 | . . . 4 ⊢ ∃𝑥 𝑥 = {𝑦 ∣ 𝑦 ⊆ 𝑧} |
10 | 9 | issetri 2564 | . . 3 ⊢ {𝑦 ∣ 𝑦 ⊆ 𝑧} ∈ V |
11 | 4, 10 | eqeltri 2110 | . 2 ⊢ 𝒫 𝑧 ∈ V |
12 | 1, 3, 11 | vtocl 2608 | 1 ⊢ 𝒫 𝐴 ∈ V |
Colors of variables: wff set class |
Syntax hints: ↔ wb 98 ∀wal 1241 = wceq 1243 ∃wex 1381 ∈ wcel 1393 {cab 2026 Vcvv 2557 ⊆ wss 2917 𝒫 cpw 3359 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-v 2559 df-in 2924 df-ss 2931 df-pw 3361 |
This theorem is referenced by: pwexg 3933 p0ex 3939 pp0ex 3940 ord3ex 3941 abexssex 5752 npex 6571 axcnex 6935 pnfxr 8692 mnfxr 8694 ixxex 8768 |
Copyright terms: Public domain | W3C validator |