![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anbi1i | GIF version |
Description: Introduce a right conjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Nov-2013.) |
Ref | Expression |
---|---|
bi.aa | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
anbi1i | ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi.aa | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
3 | 2 | pm5.32ri 428 | 1 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 97 ↔ wb 98 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: anbi2ci 432 anbi12i 433 an12 495 anandi 524 pm5.53 715 pm5.75 869 3ancoma 892 3ioran 900 an6 1216 19.26-3an 1372 19.28h 1454 19.28 1455 eeeanv 1808 sb3an 1832 moanim 1974 nfrexdya 2359 r19.26-3 2443 r19.41 2465 rexcomf 2472 3reeanv 2480 cbvreu 2531 ceqsex3v 2596 rexab 2703 rexrab 2704 rmo4 2734 reuind 2744 rmo3 2849 ssrab 3018 rexun 3123 elin3 3128 inass 3147 unssdif 3172 indifdir 3193 difin2 3199 inrab2 3210 rabun2 3216 reuun2 3220 undif4 3284 rexsns 3409 rexsnsOLD 3410 rexdifsn 3499 2ralunsn 3569 iuncom4 3664 iunxiun 3736 inuni 3909 unidif0 3920 bnd2 3926 otth2 3978 copsexg 3981 copsex4g 3984 opeqsn 3989 opelopabsbALT 3996 suc11g 4281 rabxp 4380 opeliunxp 4395 xpundir 4397 xpiundi 4398 xpiundir 4399 brinxp2 4407 rexiunxp 4478 brres 4618 brresg 4620 dmres 4632 resiexg 4653 dminss 4738 imainss 4739 ssrnres 4763 elxp4 4808 elxp5 4809 cnvresima 4810 coundi 4822 resco 4825 imaco 4826 coiun 4830 coi1 4836 coass 4839 xpcom 4864 dffun2 4912 fncnv 4965 imadiflem 4978 imadif 4979 imainlem 4980 mptun 5029 fcnvres 5073 dff1o2 5131 dff1o3 5132 ffoss 5158 f11o 5159 brprcneu 5171 fvun2 5240 eqfnfv3 5267 respreima 5295 f1ompt 5320 fsn 5335 abrexco 5398 imaiun 5399 f1mpt 5410 dff1o6 5416 oprabid 5537 dfoprab2 5552 oprab4 5575 mpt2mptx 5595 opabex3d 5748 opabex3 5749 abexssex 5752 dfopab2 5815 dfoprab3s 5816 1stconst 5842 2ndconst 5843 xporderlem 5852 brtpos2 5866 tpostpos 5879 tposmpt2 5896 oviec 6212 domen 6232 xpsnen 6295 xpcomco 6300 xpassen 6304 ltexpi 6435 dfmq0qs 6527 dfplq0qs 6528 enq0enq 6529 enq0ref 6531 enq0tr 6532 nqnq0pi 6536 prnmaxl 6586 prnminu 6587 addsrpr 6830 mulsrpr 6831 addcnsr 6910 mulcnsr 6911 ltresr 6915 addvalex 6920 axprecex 6954 elnnz 8255 fnn0ind 8354 rexuz2 8524 qreccl 8576 rexrp 8605 elixx3g 8770 elfz2 8881 elfzuzb 8884 fznn 8951 elfz2nn0 8973 fznn0 8974 4fvwrd4 8997 elfzo2 9007 fzind2 9095 cvg1nlemres 9584 bdcriota 10003 bj-peano4 10080 alsconv 10119 |
Copyright terms: Public domain | W3C validator |