ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxp5 GIF version

Theorem elxp5 4809
Description: Membership in a cross product requiring no quantifiers or dummy variables. Provides a slightly shorter version of elxp4 4808 when the double intersection does not create class existence problems (caused by int0 3629). (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
elxp5 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)))

Proof of Theorem elxp5
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2566 . 2 (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 ∈ V)
2 elex 2566 . . . 4 ( 𝐴𝐵 𝐴 ∈ V)
3 elex 2566 . . . 4 ( ran {𝐴} ∈ 𝐶 ran {𝐴} ∈ V)
42, 3anim12i 321 . . 3 (( 𝐴𝐵 ran {𝐴} ∈ 𝐶) → ( 𝐴 ∈ V ∧ ran {𝐴} ∈ V))
5 opexgOLD 3965 . . . . 5 (( 𝐴 ∈ V ∧ ran {𝐴} ∈ V) → ⟨ 𝐴, ran {𝐴}⟩ ∈ V)
65adantl 262 . . . 4 ((𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴 ∈ V ∧ ran {𝐴} ∈ V)) → ⟨ 𝐴, ran {𝐴}⟩ ∈ V)
7 eleq1 2100 . . . . 5 (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ → (𝐴 ∈ V ↔ ⟨ 𝐴, ran {𝐴}⟩ ∈ V))
87adantr 261 . . . 4 ((𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴 ∈ V ∧ ran {𝐴} ∈ V)) → (𝐴 ∈ V ↔ ⟨ 𝐴, ran {𝐴}⟩ ∈ V))
96, 8mpbird 156 . . 3 ((𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴 ∈ V ∧ ran {𝐴} ∈ V)) → 𝐴 ∈ V)
104, 9sylan2 270 . 2 ((𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)) → 𝐴 ∈ V)
11 elxp 4362 . . . 4 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
12 sneq 3386 . . . . . . . . . . . . . 14 (𝐴 = ⟨𝑥, 𝑦⟩ → {𝐴} = {⟨𝑥, 𝑦⟩})
1312rneqd 4563 . . . . . . . . . . . . 13 (𝐴 = ⟨𝑥, 𝑦⟩ → ran {𝐴} = ran {⟨𝑥, 𝑦⟩})
1413unieqd 3591 . . . . . . . . . . . 12 (𝐴 = ⟨𝑥, 𝑦⟩ → ran {𝐴} = ran {⟨𝑥, 𝑦⟩})
15 vex 2560 . . . . . . . . . . . . 13 𝑥 ∈ V
16 vex 2560 . . . . . . . . . . . . 13 𝑦 ∈ V
1715, 16op2nda 4805 . . . . . . . . . . . 12 ran {⟨𝑥, 𝑦⟩} = 𝑦
1814, 17syl6req 2089 . . . . . . . . . . 11 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝑦 = ran {𝐴})
1918pm4.71ri 372 . . . . . . . . . 10 (𝐴 = ⟨𝑥, 𝑦⟩ ↔ (𝑦 = ran {𝐴} ∧ 𝐴 = ⟨𝑥, 𝑦⟩))
2019anbi1i 431 . . . . . . . . 9 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ((𝑦 = ran {𝐴} ∧ 𝐴 = ⟨𝑥, 𝑦⟩) ∧ (𝑥𝐵𝑦𝐶)))
21 anass 381 . . . . . . . . 9 (((𝑦 = ran {𝐴} ∧ 𝐴 = ⟨𝑥, 𝑦⟩) ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
2220, 21bitri 173 . . . . . . . 8 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
2322exbii 1496 . . . . . . 7 (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ∃𝑦(𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
24 snexgOLD 3935 . . . . . . . . . 10 (𝐴 ∈ V → {𝐴} ∈ V)
25 rnexg 4597 . . . . . . . . . 10 ({𝐴} ∈ V → ran {𝐴} ∈ V)
2624, 25syl 14 . . . . . . . . 9 (𝐴 ∈ V → ran {𝐴} ∈ V)
27 uniexg 4175 . . . . . . . . 9 (ran {𝐴} ∈ V → ran {𝐴} ∈ V)
2826, 27syl 14 . . . . . . . 8 (𝐴 ∈ V → ran {𝐴} ∈ V)
29 opeq2 3550 . . . . . . . . . . 11 (𝑦 = ran {𝐴} → ⟨𝑥, 𝑦⟩ = ⟨𝑥, ran {𝐴}⟩)
3029eqeq2d 2051 . . . . . . . . . 10 (𝑦 = ran {𝐴} → (𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝑥, ran {𝐴}⟩))
31 eleq1 2100 . . . . . . . . . . 11 (𝑦 = ran {𝐴} → (𝑦𝐶 ran {𝐴} ∈ 𝐶))
3231anbi2d 437 . . . . . . . . . 10 (𝑦 = ran {𝐴} → ((𝑥𝐵𝑦𝐶) ↔ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))
3330, 32anbi12d 442 . . . . . . . . 9 (𝑦 = ran {𝐴} → ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
3433ceqsexgv 2673 . . . . . . . 8 ( ran {𝐴} ∈ V → (∃𝑦(𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
3528, 34syl 14 . . . . . . 7 (𝐴 ∈ V → (∃𝑦(𝑦 = ran {𝐴} ∧ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
3623, 35syl5bb 181 . . . . . 6 (𝐴 ∈ V → (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
37 inteq 3618 . . . . . . . . . . . 12 (𝐴 = ⟨𝑥, ran {𝐴}⟩ → 𝐴 = 𝑥, ran {𝐴}⟩)
3837inteqd 3620 . . . . . . . . . . 11 (𝐴 = ⟨𝑥, ran {𝐴}⟩ → 𝐴 = 𝑥, ran {𝐴}⟩)
3938adantl 262 . . . . . . . . . 10 ((𝐴 ∈ V ∧ 𝐴 = ⟨𝑥, ran {𝐴}⟩) → 𝐴 = 𝑥, ran {𝐴}⟩)
40 op1stbg 4210 . . . . . . . . . . . 12 ((𝑥 ∈ V ∧ ran {𝐴} ∈ V) → 𝑥, ran {𝐴}⟩ = 𝑥)
4115, 28, 40sylancr 393 . . . . . . . . . . 11 (𝐴 ∈ V → 𝑥, ran {𝐴}⟩ = 𝑥)
4241adantr 261 . . . . . . . . . 10 ((𝐴 ∈ V ∧ 𝐴 = ⟨𝑥, ran {𝐴}⟩) → 𝑥, ran {𝐴}⟩ = 𝑥)
4339, 42eqtr2d 2073 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐴 = ⟨𝑥, ran {𝐴}⟩) → 𝑥 = 𝐴)
4443ex 108 . . . . . . . 8 (𝐴 ∈ V → (𝐴 = ⟨𝑥, ran {𝐴}⟩ → 𝑥 = 𝐴))
4544pm4.71rd 374 . . . . . . 7 (𝐴 ∈ V → (𝐴 = ⟨𝑥, ran {𝐴}⟩ ↔ (𝑥 = 𝐴𝐴 = ⟨𝑥, ran {𝐴}⟩)))
4645anbi1d 438 . . . . . 6 (𝐴 ∈ V → ((𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ ((𝑥 = 𝐴𝐴 = ⟨𝑥, ran {𝐴}⟩) ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
47 anass 381 . . . . . . 7 (((𝑥 = 𝐴𝐴 = ⟨𝑥, ran {𝐴}⟩) ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ (𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))))
4847a1i 9 . . . . . 6 (𝐴 ∈ V → (((𝑥 = 𝐴𝐴 = ⟨𝑥, ran {𝐴}⟩) ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ (𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))))
4936, 46, 483bitrd 203 . . . . 5 (𝐴 ∈ V → (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))))
5049exbidv 1706 . . . 4 (𝐴 ∈ V → (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))))
5111, 50syl5bb 181 . . 3 (𝐴 ∈ V → (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥(𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)))))
52 eleq1 2100 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 ∈ V ↔ 𝐴 ∈ V))
5315, 52mpbii 136 . . . . . 6 (𝑥 = 𝐴 𝐴 ∈ V)
5453adantr 261 . . . . 5 ((𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))) → 𝐴 ∈ V)
5554exlimiv 1489 . . . 4 (∃𝑥(𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))) → 𝐴 ∈ V)
562ad2antrl 459 . . . 4 ((𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)) → 𝐴 ∈ V)
57 opeq1 3549 . . . . . . 7 (𝑥 = 𝐴 → ⟨𝑥, ran {𝐴}⟩ = ⟨ 𝐴, ran {𝐴}⟩)
5857eqeq2d 2051 . . . . . 6 (𝑥 = 𝐴 → (𝐴 = ⟨𝑥, ran {𝐴}⟩ ↔ 𝐴 = ⟨ 𝐴, ran {𝐴}⟩))
59 eleq1 2100 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝐵 𝐴𝐵))
6059anbi1d 438 . . . . . 6 (𝑥 = 𝐴 → ((𝑥𝐵 ran {𝐴} ∈ 𝐶) ↔ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)))
6158, 60anbi12d 442 . . . . 5 (𝑥 = 𝐴 → ((𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶)) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶))))
6261ceqsexgv 2673 . . . 4 ( 𝐴 ∈ V → (∃𝑥(𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶))))
6355, 56, 62pm5.21nii 620 . . 3 (∃𝑥(𝑥 = 𝐴 ∧ (𝐴 = ⟨𝑥, ran {𝐴}⟩ ∧ (𝑥𝐵 ran {𝐴} ∈ 𝐶))) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)))
6451, 63syl6bb 185 . 2 (𝐴 ∈ V → (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶))))
651, 10, 64pm5.21nii 620 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 = ⟨ 𝐴, ran {𝐴}⟩ ∧ ( 𝐴𝐵 ran {𝐴} ∈ 𝐶)))
Colors of variables: wff set class
Syntax hints:  wa 97  wb 98   = wceq 1243  wex 1381  wcel 1393  Vcvv 2557  {csn 3375  cop 3378   cuni 3580   cint 3615   × cxp 4343  ran crn 4346
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-cnv 4353  df-dm 4355  df-rn 4356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator