ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.28h GIF version

Theorem 19.28h 1451
Description: Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.28h.1 (φxφ)
Assertion
Ref Expression
19.28h (x(φ ψ) ↔ (φ xψ))

Proof of Theorem 19.28h
StepHypRef Expression
1 19.26 1367 . 2 (x(φ ψ) ↔ (xφ xψ))
2 19.28h.1 . . . 4 (φxφ)
3219.3h 1442 . . 3 (xφφ)
43anbi1i 431 . 2 ((xφ xψ) ↔ (φ xψ))
51, 4bitri 173 1 (x(φ ψ) ↔ (φ xψ))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98  wal 1240
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-4 1397
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  nfan1  1453  aaanh  1475  exan  1580  19.28v  1777
  Copyright terms: Public domain W3C validator