ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrnres GIF version

Theorem ssrnres 4763
Description: Subset of the range of a restriction. (Contributed by NM, 16-Jan-2006.)
Assertion
Ref Expression
ssrnres (𝐵 ⊆ ran (𝐶𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵)

Proof of Theorem ssrnres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 3158 . . . . 5 (𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)
2 rnss 4564 . . . . 5 ((𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) → ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐴 × 𝐵))
31, 2ax-mp 7 . . . 4 ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐴 × 𝐵)
4 rnxpss 4754 . . . 4 ran (𝐴 × 𝐵) ⊆ 𝐵
53, 4sstri 2954 . . 3 ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ 𝐵
6 eqss 2960 . . 3 (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ (ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ 𝐵𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵))))
75, 6mpbiran 847 . 2 (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)))
8 ssid 2964 . . . . . . . 8 𝐴𝐴
9 ssv 2965 . . . . . . . 8 𝐵 ⊆ V
10 xpss12 4445 . . . . . . . 8 ((𝐴𝐴𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (𝐴 × V))
118, 9, 10mp2an 402 . . . . . . 7 (𝐴 × 𝐵) ⊆ (𝐴 × V)
12 sslin 3163 . . . . . . 7 ((𝐴 × 𝐵) ⊆ (𝐴 × V) → (𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐶 ∩ (𝐴 × V)))
1311, 12ax-mp 7 . . . . . 6 (𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐶 ∩ (𝐴 × V))
14 df-res 4357 . . . . . 6 (𝐶𝐴) = (𝐶 ∩ (𝐴 × V))
1513, 14sseqtr4i 2978 . . . . 5 (𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐶𝐴)
16 rnss 4564 . . . . 5 ((𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐶𝐴) → ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐶𝐴))
1715, 16ax-mp 7 . . . 4 ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐶𝐴)
18 sstr 2953 . . . 4 ((𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)) ∧ ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐶𝐴)) → 𝐵 ⊆ ran (𝐶𝐴))
1917, 18mpan2 401 . . 3 (𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)) → 𝐵 ⊆ ran (𝐶𝐴))
20 ssel 2939 . . . . . . 7 (𝐵 ⊆ ran (𝐶𝐴) → (𝑦𝐵𝑦 ∈ ran (𝐶𝐴)))
21 vex 2560 . . . . . . . 8 𝑦 ∈ V
2221elrn2 4576 . . . . . . 7 (𝑦 ∈ ran (𝐶𝐴) ↔ ∃𝑥𝑥, 𝑦⟩ ∈ (𝐶𝐴))
2320, 22syl6ib 150 . . . . . 6 (𝐵 ⊆ ran (𝐶𝐴) → (𝑦𝐵 → ∃𝑥𝑥, 𝑦⟩ ∈ (𝐶𝐴)))
2423ancrd 309 . . . . 5 (𝐵 ⊆ ran (𝐶𝐴) → (𝑦𝐵 → (∃𝑥𝑥, 𝑦⟩ ∈ (𝐶𝐴) ∧ 𝑦𝐵)))
2521elrn2 4576 . . . . . 6 (𝑦 ∈ ran (𝐶 ∩ (𝐴 × 𝐵)) ↔ ∃𝑥𝑥, 𝑦⟩ ∈ (𝐶 ∩ (𝐴 × 𝐵)))
26 elin 3126 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐶 ∩ (𝐴 × 𝐵)) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐶 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
27 opelxp 4374 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
2827anbi2i 430 . . . . . . . 8 ((⟨𝑥, 𝑦⟩ ∈ 𝐶 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐶 ∧ (𝑥𝐴𝑦𝐵)))
2921opelres 4617 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑥𝐴))
3029anbi1i 431 . . . . . . . . 9 ((⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴) ∧ 𝑦𝐵) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐶𝑥𝐴) ∧ 𝑦𝐵))
31 anass 381 . . . . . . . . 9 (((⟨𝑥, 𝑦⟩ ∈ 𝐶𝑥𝐴) ∧ 𝑦𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐶 ∧ (𝑥𝐴𝑦𝐵)))
3230, 31bitr2i 174 . . . . . . . 8 ((⟨𝑥, 𝑦⟩ ∈ 𝐶 ∧ (𝑥𝐴𝑦𝐵)) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴) ∧ 𝑦𝐵))
3326, 28, 323bitri 195 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ (𝐶 ∩ (𝐴 × 𝐵)) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴) ∧ 𝑦𝐵))
3433exbii 1496 . . . . . 6 (∃𝑥𝑥, 𝑦⟩ ∈ (𝐶 ∩ (𝐴 × 𝐵)) ↔ ∃𝑥(⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴) ∧ 𝑦𝐵))
35 19.41v 1782 . . . . . 6 (∃𝑥(⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴) ∧ 𝑦𝐵) ↔ (∃𝑥𝑥, 𝑦⟩ ∈ (𝐶𝐴) ∧ 𝑦𝐵))
3625, 34, 353bitri 195 . . . . 5 (𝑦 ∈ ran (𝐶 ∩ (𝐴 × 𝐵)) ↔ (∃𝑥𝑥, 𝑦⟩ ∈ (𝐶𝐴) ∧ 𝑦𝐵))
3724, 36syl6ibr 151 . . . 4 (𝐵 ⊆ ran (𝐶𝐴) → (𝑦𝐵𝑦 ∈ ran (𝐶 ∩ (𝐴 × 𝐵))))
3837ssrdv 2951 . . 3 (𝐵 ⊆ ran (𝐶𝐴) → 𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)))
3919, 38impbii 117 . 2 (𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)) ↔ 𝐵 ⊆ ran (𝐶𝐴))
407, 39bitr2i 174 1 (𝐵 ⊆ ran (𝐶𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 97  wb 98   = wceq 1243  wex 1381  wcel 1393  Vcvv 2557  cin 2916  wss 2917  cop 3378   × cxp 4343  ran crn 4346  cres 4347
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-cnv 4353  df-dm 4355  df-rn 4356  df-res 4357
This theorem is referenced by:  rninxp  4764
  Copyright terms: Public domain W3C validator