ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resiexg GIF version

Theorem resiexg 4653
Description: The existence of a restricted identity function, proved without using the Axiom of Replacement. (Contributed by NM, 13-Jan-2007.)
Assertion
Ref Expression
resiexg (𝐴𝑉 → ( I ↾ 𝐴) ∈ V)

Proof of Theorem resiexg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 4639 . . 3 Rel ( I ↾ 𝐴)
2 simpr 103 . . . . 5 ((𝑥 = 𝑦𝑥𝐴) → 𝑥𝐴)
3 eleq1 2100 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
43biimpa 280 . . . . 5 ((𝑥 = 𝑦𝑥𝐴) → 𝑦𝐴)
52, 4jca 290 . . . 4 ((𝑥 = 𝑦𝑥𝐴) → (𝑥𝐴𝑦𝐴))
6 vex 2560 . . . . . 6 𝑦 ∈ V
76opelres 4617 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐴) ↔ (⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥𝐴))
8 df-br 3765 . . . . . . 7 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
96ideq 4488 . . . . . . 7 (𝑥 I 𝑦𝑥 = 𝑦)
108, 9bitr3i 175 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦)
1110anbi1i 431 . . . . 5 ((⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥𝐴) ↔ (𝑥 = 𝑦𝑥𝐴))
127, 11bitri 173 . . . 4 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐴) ↔ (𝑥 = 𝑦𝑥𝐴))
13 opelxp 4374 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴) ↔ (𝑥𝐴𝑦𝐴))
145, 12, 133imtr4i 190 . . 3 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴))
151, 14relssi 4431 . 2 ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)
16 xpexg 4452 . . 3 ((𝐴𝑉𝐴𝑉) → (𝐴 × 𝐴) ∈ V)
1716anidms 377 . 2 (𝐴𝑉 → (𝐴 × 𝐴) ∈ V)
18 ssexg 3896 . 2 ((( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → ( I ↾ 𝐴) ∈ V)
1915, 17, 18sylancr 393 1 (𝐴𝑉 → ( I ↾ 𝐴) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wcel 1393  Vcvv 2557  wss 2917  cop 3378   class class class wbr 3764   I cid 4025   × cxp 4343  cres 4347
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-res 4357
This theorem is referenced by:  ordiso  6358
  Copyright terms: Public domain W3C validator