![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resiexg | GIF version |
Description: The existence of a restricted identity function, proved without using the Axiom of Replacement. (Contributed by NM, 13-Jan-2007.) |
Ref | Expression |
---|---|
resiexg | ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 4639 | . . 3 ⊢ Rel ( I ↾ 𝐴) | |
2 | simpr 103 | . . . . 5 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
3 | eleq1 2100 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
4 | 3 | biimpa 280 | . . . . 5 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
5 | 2, 4 | jca 290 | . . . 4 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
6 | vex 2560 | . . . . . 6 ⊢ 𝑦 ∈ V | |
7 | 6 | opelres 4617 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ↾ 𝐴) ↔ (〈𝑥, 𝑦〉 ∈ I ∧ 𝑥 ∈ 𝐴)) |
8 | df-br 3765 | . . . . . . 7 ⊢ (𝑥 I 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ I ) | |
9 | 6 | ideq 4488 | . . . . . . 7 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
10 | 8, 9 | bitr3i 175 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ I ↔ 𝑥 = 𝑦) |
11 | 10 | anbi1i 431 | . . . . 5 ⊢ ((〈𝑥, 𝑦〉 ∈ I ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴)) |
12 | 7, 11 | bitri 173 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ↾ 𝐴) ↔ (𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴)) |
13 | opelxp 4374 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) | |
14 | 5, 12, 13 | 3imtr4i 190 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ↾ 𝐴) → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐴)) |
15 | 1, 14 | relssi 4431 | . 2 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) |
16 | xpexg 4452 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐴 × 𝐴) ∈ V) | |
17 | 16 | anidms 377 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 𝐴) ∈ V) |
18 | ssexg 3896 | . 2 ⊢ ((( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ∈ V) → ( I ↾ 𝐴) ∈ V) | |
19 | 15, 17, 18 | sylancr 393 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∈ wcel 1393 Vcvv 2557 ⊆ wss 2917 〈cop 3378 class class class wbr 3764 I cid 4025 × cxp 4343 ↾ cres 4347 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-id 4030 df-xp 4351 df-rel 4352 df-res 4357 |
This theorem is referenced by: ordiso 6358 |
Copyright terms: Public domain | W3C validator |