![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-res | GIF version |
Description: Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example ( F = { 〈 2 , 6 〉, 〈 3 , 9 〉 } ∧ B = { 1 , 2 } ) -> ( F ↾ B ) = { 〈 2 , 6 〉 } . (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
df-res | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cres 4347 | . 2 class (𝐴 ↾ 𝐵) |
4 | cvv 2557 | . . . 4 class V | |
5 | 2, 4 | cxp 4343 | . . 3 class (𝐵 × V) |
6 | 1, 5 | cin 2916 | . 2 class (𝐴 ∩ (𝐵 × V)) |
7 | 3, 6 | wceq 1243 | 1 wff (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
Colors of variables: wff set class |
This definition is referenced by: reseq1 4606 reseq2 4607 nfres 4614 csbresg 4615 res0 4616 opelres 4617 resres 4624 resundi 4625 resundir 4626 resindi 4627 resindir 4628 inres 4629 resiun1 4630 resiun2 4631 resss 4635 ssres 4637 ssres2 4638 relres 4639 xpssres 4645 resopab 4652 ssrnres 4763 imainrect 4766 xpima1 4767 xpima2m 4768 cnvcnv2 4774 resdmres 4812 nfvres 5206 ressnop0 5344 |
Copyright terms: Public domain | W3C validator |