![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpima2m | GIF version |
Description: The image by a cross product. (Contributed by Thierry Arnoux, 16-Dec-2017.) |
Ref | Expression |
---|---|
xpima2m | ⊢ (∃x x ∈ (A ∩ 𝐶) → ((A × B) “ 𝐶) = B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 4301 | . . . 4 ⊢ ((A × B) “ 𝐶) = ran ((A × B) ↾ 𝐶) | |
2 | df-res 4300 | . . . . 5 ⊢ ((A × B) ↾ 𝐶) = ((A × B) ∩ (𝐶 × V)) | |
3 | 2 | rneqi 4505 | . . . 4 ⊢ ran ((A × B) ↾ 𝐶) = ran ((A × B) ∩ (𝐶 × V)) |
4 | inxp 4413 | . . . . 5 ⊢ ((A × B) ∩ (𝐶 × V)) = ((A ∩ 𝐶) × (B ∩ V)) | |
5 | 4 | rneqi 4505 | . . . 4 ⊢ ran ((A × B) ∩ (𝐶 × V)) = ran ((A ∩ 𝐶) × (B ∩ V)) |
6 | 1, 3, 5 | 3eqtri 2061 | . . 3 ⊢ ((A × B) “ 𝐶) = ran ((A ∩ 𝐶) × (B ∩ V)) |
7 | rnxpm 4695 | . . 3 ⊢ (∃x x ∈ (A ∩ 𝐶) → ran ((A ∩ 𝐶) × (B ∩ V)) = (B ∩ V)) | |
8 | 6, 7 | syl5eq 2081 | . 2 ⊢ (∃x x ∈ (A ∩ 𝐶) → ((A × B) “ 𝐶) = (B ∩ V)) |
9 | inv1 3247 | . 2 ⊢ (B ∩ V) = B | |
10 | 8, 9 | syl6eq 2085 | 1 ⊢ (∃x x ∈ (A ∩ 𝐶) → ((A × B) “ 𝐶) = B) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1242 ∃wex 1378 ∈ wcel 1390 Vcvv 2551 ∩ cin 2910 × cxp 4286 ran crn 4289 ↾ cres 4290 “ cima 4291 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-14 1402 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 ax-sep 3866 ax-pow 3918 ax-pr 3935 |
This theorem depends on definitions: df-bi 110 df-3an 886 df-tru 1245 df-nf 1347 df-sb 1643 df-eu 1900 df-mo 1901 df-clab 2024 df-cleq 2030 df-clel 2033 df-nfc 2164 df-ral 2305 df-rex 2306 df-v 2553 df-un 2916 df-in 2918 df-ss 2925 df-pw 3353 df-sn 3373 df-pr 3374 df-op 3376 df-br 3756 df-opab 3810 df-xp 4294 df-rel 4295 df-cnv 4296 df-dm 4298 df-rn 4299 df-res 4300 df-ima 4301 |
This theorem is referenced by: xpimasn 4712 |
Copyright terms: Public domain | W3C validator |