![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5eq | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl5eq.1 | ⊢ 𝐴 = 𝐵 |
syl5eq.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
syl5eq | ⊢ (𝜑 → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5eq.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | syl5eq.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
4 | 2, 3 | eqtrd 2072 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-4 1400 ax-17 1419 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-cleq 2033 |
This theorem is referenced by: syl5req 2085 syl5eqr 2086 3eqtr3a 2096 3eqtr4g 2097 csbtt 2862 csbvarg 2877 csbie2g 2896 rabbi2dva 3145 csbprc 3262 disjssun 3285 disjpr2 3434 prprc2 3479 difprsn2 3504 opprc 3570 intsng 3649 riinm 3729 iinxsng 3730 rintm 3744 sucprc 4149 unisucg 4151 xpriindim 4474 relop 4486 dmxpm 4555 riinint 4593 resabs1 4640 resabs2 4641 resima2 4644 xpssres 4645 resopab2 4655 imasng 4690 ndmima 4702 xpdisj1 4747 xpdisj2 4748 djudisj 4750 resdisj 4751 rnxpm 4752 xpima1 4767 xpima2m 4768 dmsnsnsng 4798 rnsnopg 4799 rnpropg 4800 mptiniseg 4815 dfco2a 4821 relcoi1 4849 unixpm 4853 iotaval 4878 funtp 4952 fnun 5005 fnresdisj 5009 fnima 5017 fnimaeq0 5020 fcoi1 5070 f1orescnv 5142 foun 5145 resdif 5148 tz6.12-2 5169 fveu 5170 tz6.12-1 5200 fvun2 5240 fvopab3ig 5246 f1oresrab 5329 dfmptg 5342 ressnop0 5344 fvunsng 5357 fsnunfv 5363 fvpr1 5365 fvpr2 5366 fvpr1g 5367 fvpr2g 5368 fvtp1g 5369 fvtp2g 5370 fvtp3g 5371 fvtp2 5373 fvtp3 5374 f1oiso2 5466 riotaund 5502 ovprc 5540 resoprab2 5598 fnoprabg 5602 ovidig 5618 ovigg 5621 ov6g 5638 ovconst2 5652 offval2 5726 ot1stg 5779 ot2ndg 5780 ot3rdgg 5781 fmpt2co 5837 algrflemg 5851 tpostpos2 5880 rdgisuc1 5971 frec0g 5983 frecsuclem1 5987 frecsuclem2 5989 frecrdg 5992 oasuc 6044 oa1suc 6047 omsuc 6051 nnm1 6097 nnm2 6098 dfec2 6109 errn 6128 phplem2 6316 1qec 6486 mulidnq 6487 addpinq1 6562 0idsr 6852 1idsr 6853 caucvgsrlemoffres 6884 caucvgsr 6886 mulresr 6914 pitonnlem2 6923 ax1rid 6951 axcnre 6955 negid 7258 subneg 7260 negneg 7261 2times 8038 rexneg 8743 fseq1p1m1 8956 fzosplitprm1 9090 intfracq 9162 frec2uz0d 9185 frec2uzrdg 9195 frecuzrdg0 9200 iseqval 9220 sqval 9312 binom3 9366 shftlem 9417 shftuz 9418 shftidt 9434 reim0 9461 remullem 9471 resqrexlemf1 9606 resqrexlemcalc3 9614 absexpzap 9676 absimle 9680 amgm2 9714 ialgr0 9883 ialgrp1 9885 ex-ceil 9896 qdencn 10124 |
Copyright terms: Public domain | W3C validator |