ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvtp1g GIF version

Theorem fvtp1g 5369
Description: The value of a function with a domain of (at most) three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
Assertion
Ref Expression
fvtp1g (((𝐴𝑉𝐷𝑊) ∧ (𝐴𝐵𝐴𝐶)) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐴) = 𝐷)

Proof of Theorem fvtp1g
StepHypRef Expression
1 df-tp 3383 . . 3 {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})
21fveq1i 5179 . 2 ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐴) = (({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})‘𝐴)
3 necom 2289 . . . . 5 (𝐴𝐶𝐶𝐴)
4 fvunsng 5357 . . . . 5 ((𝐴𝑉𝐶𝐴) → (({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})‘𝐴) = ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩}‘𝐴))
53, 4sylan2b 271 . . . 4 ((𝐴𝑉𝐴𝐶) → (({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})‘𝐴) = ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩}‘𝐴))
65ad2ant2rl 480 . . 3 (((𝐴𝑉𝐷𝑊) ∧ (𝐴𝐵𝐴𝐶)) → (({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})‘𝐴) = ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩}‘𝐴))
7 fvpr1g 5367 . . . . 5 ((𝐴𝑉𝐷𝑊𝐴𝐵) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩}‘𝐴) = 𝐷)
873expa 1104 . . . 4 (((𝐴𝑉𝐷𝑊) ∧ 𝐴𝐵) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩}‘𝐴) = 𝐷)
98adantrr 448 . . 3 (((𝐴𝑉𝐷𝑊) ∧ (𝐴𝐵𝐴𝐶)) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩}‘𝐴) = 𝐷)
106, 9eqtrd 2072 . 2 (((𝐴𝑉𝐷𝑊) ∧ (𝐴𝐵𝐴𝐶)) → (({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})‘𝐴) = 𝐷)
112, 10syl5eq 2084 1 (((𝐴𝑉𝐷𝑊) ∧ (𝐴𝐵𝐴𝐶)) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐴) = 𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wcel 1393  wne 2204  cun 2915  {csn 3375  {cpr 3376  {ctp 3377  cop 3378  cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-tp 3383  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-res 4357  df-iota 4867  df-fun 4904  df-fv 4910
This theorem is referenced by:  fvtp2g  5370  fvtp1  5372
  Copyright terms: Public domain W3C validator