![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mptiniseg | GIF version |
Description: Converse singleton image of a function defined by maps-to. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
dmmpt2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
mptiniseg | ⊢ (𝐶 ∈ 𝑉 → (◡𝐹 “ {𝐶}) = {𝑥 ∈ 𝐴 ∣ 𝐵 = 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmpt2.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | mptpreima 4814 | . 2 ⊢ (◡𝐹 “ {𝐶}) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {𝐶}} |
3 | elsn2g 3404 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (𝐵 ∈ {𝐶} ↔ 𝐵 = 𝐶)) | |
4 | 3 | rabbidv 2549 | . 2 ⊢ (𝐶 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ {𝐶}} = {𝑥 ∈ 𝐴 ∣ 𝐵 = 𝐶}) |
5 | 2, 4 | syl5eq 2084 | 1 ⊢ (𝐶 ∈ 𝑉 → (◡𝐹 “ {𝐶}) = {𝑥 ∈ 𝐴 ∣ 𝐵 = 𝐶}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1243 ∈ wcel 1393 {crab 2310 {csn 3375 ↦ cmpt 3818 ◡ccnv 4344 “ cima 4348 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-mpt 3820 df-xp 4351 df-rel 4352 df-cnv 4353 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |