Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpdisj2 GIF version

Theorem xpdisj2 4748
 Description: Cross products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.)
Assertion
Ref Expression
xpdisj2 ((𝐴𝐵) = ∅ → ((𝐶 × 𝐴) ∩ (𝐷 × 𝐵)) = ∅)

Proof of Theorem xpdisj2
StepHypRef Expression
1 inxp 4470 . 2 ((𝐶 × 𝐴) ∩ (𝐷 × 𝐵)) = ((𝐶𝐷) × (𝐴𝐵))
2 xpeq2 4360 . . 3 ((𝐴𝐵) = ∅ → ((𝐶𝐷) × (𝐴𝐵)) = ((𝐶𝐷) × ∅))
3 xp0 4743 . . 3 ((𝐶𝐷) × ∅) = ∅
42, 3syl6eq 2088 . 2 ((𝐴𝐵) = ∅ → ((𝐶𝐷) × (𝐴𝐵)) = ∅)
51, 4syl5eq 2084 1 ((𝐴𝐵) = ∅ → ((𝐶 × 𝐴) ∩ (𝐷 × 𝐵)) = ∅)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1243   ∩ cin 2916  ∅c0 3224   × cxp 4343 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-cnv 4353 This theorem is referenced by:  xpsndisj  4749
 Copyright terms: Public domain W3C validator