Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eqtr3a GIF version

Theorem 3eqtr3a 2096
 Description: A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015.)
Hypotheses
Ref Expression
3eqtr3a.1 𝐴 = 𝐵
3eqtr3a.2 (𝜑𝐴 = 𝐶)
3eqtr3a.3 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
3eqtr3a (𝜑𝐶 = 𝐷)

Proof of Theorem 3eqtr3a
StepHypRef Expression
1 3eqtr3a.2 . 2 (𝜑𝐴 = 𝐶)
2 3eqtr3a.1 . . 3 𝐴 = 𝐵
3 3eqtr3a.3 . . 3 (𝜑𝐵 = 𝐷)
42, 3syl5eq 2084 . 2 (𝜑𝐴 = 𝐷)
51, 4eqtr3d 2074 1 (𝜑𝐶 = 𝐷)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1243 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-4 1400  ax-17 1419  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-cleq 2033 This theorem is referenced by:  uneqin  3188  coi2  4837  foima  5111  f1imacnv  5143  fvsnun2  5361  phplem4  6318  phplem4on  6329  halfnqq  6508  resqrexlemcalc1  9612
 Copyright terms: Public domain W3C validator