Proof of Theorem phplem2
Step | Hyp | Ref
| Expression |
1 | | phplem2.2 |
. . . . . . . 8
⊢ 𝐵 ∈ V |
2 | | phplem2.1 |
. . . . . . . 8
⊢ 𝐴 ∈ V |
3 | 1, 2 | opex 3966 |
. . . . . . 7
⊢
〈𝐵, 𝐴〉 ∈ V |
4 | 3 | snex 3937 |
. . . . . 6
⊢
{〈𝐵, 𝐴〉} ∈
V |
5 | 1, 2 | f1osn 5166 |
. . . . . 6
⊢
{〈𝐵, 𝐴〉}:{𝐵}–1-1-onto→{𝐴} |
6 | | f1oen3g 6234 |
. . . . . 6
⊢
(({〈𝐵, 𝐴〉} ∈ V ∧
{〈𝐵, 𝐴〉}:{𝐵}–1-1-onto→{𝐴}) → {𝐵} ≈ {𝐴}) |
7 | 4, 5, 6 | mp2an 402 |
. . . . 5
⊢ {𝐵} ≈ {𝐴} |
8 | | difss 3070 |
. . . . . . 7
⊢ (𝐴 ∖ {𝐵}) ⊆ 𝐴 |
9 | 2, 8 | ssexi 3895 |
. . . . . 6
⊢ (𝐴 ∖ {𝐵}) ∈ V |
10 | 9 | enref 6245 |
. . . . 5
⊢ (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {𝐵}) |
11 | 7, 10 | pm3.2i 257 |
. . . 4
⊢ ({𝐵} ≈ {𝐴} ∧ (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {𝐵})) |
12 | | incom 3129 |
. . . . . 6
⊢ ({𝐴} ∩ (𝐴 ∖ {𝐵})) = ((𝐴 ∖ {𝐵}) ∩ {𝐴}) |
13 | | ssrin 3162 |
. . . . . . . . 9
⊢ ((𝐴 ∖ {𝐵}) ⊆ 𝐴 → ((𝐴 ∖ {𝐵}) ∩ {𝐴}) ⊆ (𝐴 ∩ {𝐴})) |
14 | 8, 13 | ax-mp 7 |
. . . . . . . 8
⊢ ((𝐴 ∖ {𝐵}) ∩ {𝐴}) ⊆ (𝐴 ∩ {𝐴}) |
15 | | nnord 4334 |
. . . . . . . . 9
⊢ (𝐴 ∈ ω → Ord 𝐴) |
16 | | orddisj 4270 |
. . . . . . . . 9
⊢ (Ord
𝐴 → (𝐴 ∩ {𝐴}) = ∅) |
17 | 15, 16 | syl 14 |
. . . . . . . 8
⊢ (𝐴 ∈ ω → (𝐴 ∩ {𝐴}) = ∅) |
18 | 14, 17 | syl5sseq 2993 |
. . . . . . 7
⊢ (𝐴 ∈ ω → ((𝐴 ∖ {𝐵}) ∩ {𝐴}) ⊆ ∅) |
19 | | ss0 3257 |
. . . . . . 7
⊢ (((𝐴 ∖ {𝐵}) ∩ {𝐴}) ⊆ ∅ → ((𝐴 ∖ {𝐵}) ∩ {𝐴}) = ∅) |
20 | 18, 19 | syl 14 |
. . . . . 6
⊢ (𝐴 ∈ ω → ((𝐴 ∖ {𝐵}) ∩ {𝐴}) = ∅) |
21 | 12, 20 | syl5eq 2084 |
. . . . 5
⊢ (𝐴 ∈ ω → ({𝐴} ∩ (𝐴 ∖ {𝐵})) = ∅) |
22 | | disjdif 3296 |
. . . . 5
⊢ ({𝐵} ∩ (𝐴 ∖ {𝐵})) = ∅ |
23 | 21, 22 | jctil 295 |
. . . 4
⊢ (𝐴 ∈ ω → (({𝐵} ∩ (𝐴 ∖ {𝐵})) = ∅ ∧ ({𝐴} ∩ (𝐴 ∖ {𝐵})) = ∅)) |
24 | | unen 6293 |
. . . 4
⊢ ((({𝐵} ≈ {𝐴} ∧ (𝐴 ∖ {𝐵}) ≈ (𝐴 ∖ {𝐵})) ∧ (({𝐵} ∩ (𝐴 ∖ {𝐵})) = ∅ ∧ ({𝐴} ∩ (𝐴 ∖ {𝐵})) = ∅)) → ({𝐵} ∪ (𝐴 ∖ {𝐵})) ≈ ({𝐴} ∪ (𝐴 ∖ {𝐵}))) |
25 | 11, 23, 24 | sylancr 393 |
. . 3
⊢ (𝐴 ∈ ω → ({𝐵} ∪ (𝐴 ∖ {𝐵})) ≈ ({𝐴} ∪ (𝐴 ∖ {𝐵}))) |
26 | 25 | adantr 261 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ({𝐵} ∪ (𝐴 ∖ {𝐵})) ≈ ({𝐴} ∪ (𝐴 ∖ {𝐵}))) |
27 | | uncom 3087 |
. . 3
⊢ ({𝐵} ∪ (𝐴 ∖ {𝐵})) = ((𝐴 ∖ {𝐵}) ∪ {𝐵}) |
28 | | nndifsnid 6080 |
. . 3
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = 𝐴) |
29 | 27, 28 | syl5eq 2084 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ({𝐵} ∪ (𝐴 ∖ {𝐵})) = 𝐴) |
30 | | phplem1 6315 |
. 2
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵})) |
31 | 26, 29, 30 | 3brtr3d 3793 |
1
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) |