ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemoffres GIF version

Theorem caucvgsrlemoffres 6882
Description: Lemma for caucvgsr 6884. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
caucvgsrlembnd.bnd (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
caucvgsrlembnd.offset 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))
Assertion
Ref Expression
caucvgsrlemoffres (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
Distinct variable groups:   𝐴,𝑎,𝑘   𝑥,𝐴,𝑗,𝑘   𝐴,𝑚,𝑘   𝑦,𝐴,𝑗,𝑘,𝑥   𝐹,𝑎,𝑘   𝑦,𝐹   𝑥,𝐺,𝑗,𝑘   𝐺,𝑙,𝑢,𝑗,𝑘   𝑚,𝐺,𝑛,𝑘   𝑛,𝑙,𝑢   𝑛,𝑎,𝜑,𝑘   𝜑,𝑥,𝑗   𝜑,𝑚,𝑛,𝑎
Allowed substitution hints:   𝜑(𝑦,𝑢,𝑙)   𝐴(𝑢,𝑛,𝑙)   𝐹(𝑥,𝑢,𝑗,𝑚,𝑛,𝑙)   𝐺(𝑦,𝑎)

Proof of Theorem caucvgsrlemoffres
Dummy variables 𝑖 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgsr.f . . . 4 (𝜑𝐹:NR)
2 caucvgsr.cau . . . 4 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
3 caucvgsrlembnd.bnd . . . 4 (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
4 caucvgsrlembnd.offset . . . 4 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))
51, 2, 3, 4caucvgsrlemofff 6879 . . 3 (𝜑𝐺:NR)
61, 2, 3, 4caucvgsrlemoffcau 6880 . . 3 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐺𝑛) <R ((𝐺𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐺𝑘) <R ((𝐺𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1𝑜⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
71, 2, 3, 4caucvgsrlemoffgt1 6881 . . 3 (𝜑 → ∀𝑚N 1R <R (𝐺𝑚))
85, 6, 7caucvgsrlemgt1 6877 . 2 (𝜑 → ∃𝑧R𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥)))))
9 simprl 483 . . . . 5 ((𝜑 ∧ (𝑧R ∧ ∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥)))))) → 𝑧R)
103caucvgsrlemasr 6872 . . . . . 6 (𝜑𝐴R)
1110adantr 261 . . . . 5 ((𝜑 ∧ (𝑧R ∧ ∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥)))))) → 𝐴R)
12 addclsr 6836 . . . . 5 ((𝑧R𝐴R) → (𝑧 +R 𝐴) ∈ R)
139, 11, 12syl2anc 391 . . . 4 ((𝜑 ∧ (𝑧R ∧ ∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥)))))) → (𝑧 +R 𝐴) ∈ R)
14 m1r 6835 . . . 4 -1RR
15 addclsr 6836 . . . 4 (((𝑧 +R 𝐴) ∈ R ∧ -1RR) → ((𝑧 +R 𝐴) +R -1R) ∈ R)
1613, 14, 15sylancl 392 . . 3 ((𝜑 ∧ (𝑧R ∧ ∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥)))))) → ((𝑧 +R 𝐴) +R -1R) ∈ R)
17 ltasrg 6853 . . . . . . . . . . . . . . . 16 ((𝑓R𝑔RR) → (𝑓 <R 𝑔 ↔ ( +R 𝑓) <R ( +R 𝑔)))
1817adantl 262 . . . . . . . . . . . . . . 15 (((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) ∧ (𝑓R𝑔RR)) → (𝑓 <R 𝑔 ↔ ( +R 𝑓) <R ( +R 𝑔)))
195ad3antrrr 461 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → 𝐺:NR)
20 simpr 103 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → 𝑖N)
2119, 20ffvelrnd 5303 . . . . . . . . . . . . . . 15 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (𝐺𝑖) ∈ R)
22 simpllr 486 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → 𝑧R)
23 simplr 482 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → 𝑥R)
24 addclsr 6836 . . . . . . . . . . . . . . . 16 ((𝑧R𝑥R) → (𝑧 +R 𝑥) ∈ R)
2522, 23, 24syl2anc 391 . . . . . . . . . . . . . . 15 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (𝑧 +R 𝑥) ∈ R)
2610ad3antrrr 461 . . . . . . . . . . . . . . 15 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → 𝐴R)
27 addcomsrg 6838 . . . . . . . . . . . . . . . 16 ((𝑓R𝑔R) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓))
2827adantl 262 . . . . . . . . . . . . . . 15 (((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) ∧ (𝑓R𝑔R)) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓))
2918, 21, 25, 26, 28caovord2d 5670 . . . . . . . . . . . . . 14 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝐺𝑖) <R (𝑧 +R 𝑥) ↔ ((𝐺𝑖) +R 𝐴) <R ((𝑧 +R 𝑥) +R 𝐴)))
301, 2, 3, 4caucvgsrlemoffval 6878 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖N) → ((𝐺𝑖) +R 𝐴) = ((𝐹𝑖) +R 1R))
3130adantlr 446 . . . . . . . . . . . . . . . 16 (((𝜑𝑧R) ∧ 𝑖N) → ((𝐺𝑖) +R 𝐴) = ((𝐹𝑖) +R 1R))
3231adantlr 446 . . . . . . . . . . . . . . 15 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝐺𝑖) +R 𝐴) = ((𝐹𝑖) +R 1R))
3332breq1d 3774 . . . . . . . . . . . . . 14 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝐺𝑖) +R 𝐴) <R ((𝑧 +R 𝑥) +R 𝐴) ↔ ((𝐹𝑖) +R 1R) <R ((𝑧 +R 𝑥) +R 𝐴)))
3429, 33bitrd 177 . . . . . . . . . . . . 13 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝐺𝑖) <R (𝑧 +R 𝑥) ↔ ((𝐹𝑖) +R 1R) <R ((𝑧 +R 𝑥) +R 𝐴)))
35 addasssrg 6839 . . . . . . . . . . . . . . . 16 ((𝑓R𝑔RR) → ((𝑓 +R 𝑔) +R ) = (𝑓 +R (𝑔 +R )))
3635adantl 262 . . . . . . . . . . . . . . 15 (((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) ∧ (𝑓R𝑔RR)) → ((𝑓 +R 𝑔) +R ) = (𝑓 +R (𝑔 +R )))
3722, 23, 26, 28, 36caov32d 5681 . . . . . . . . . . . . . 14 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝑧 +R 𝑥) +R 𝐴) = ((𝑧 +R 𝐴) +R 𝑥))
3837breq2d 3776 . . . . . . . . . . . . 13 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝐹𝑖) +R 1R) <R ((𝑧 +R 𝑥) +R 𝐴) ↔ ((𝐹𝑖) +R 1R) <R ((𝑧 +R 𝐴) +R 𝑥)))
391ad2antrr 457 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧R) ∧ 𝑥R) → 𝐹:NR)
4039ffvelrnda 5302 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (𝐹𝑖) ∈ R)
41 1sr 6834 . . . . . . . . . . . . . . . 16 1RR
42 addclsr 6836 . . . . . . . . . . . . . . . 16 (((𝐹𝑖) ∈ R ∧ 1RR) → ((𝐹𝑖) +R 1R) ∈ R)
4340, 41, 42sylancl 392 . . . . . . . . . . . . . . 15 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝐹𝑖) +R 1R) ∈ R)
4422, 26, 12syl2anc 391 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (𝑧 +R 𝐴) ∈ R)
45 addclsr 6836 . . . . . . . . . . . . . . . 16 (((𝑧 +R 𝐴) ∈ R𝑥R) → ((𝑧 +R 𝐴) +R 𝑥) ∈ R)
4644, 23, 45syl2anc 391 . . . . . . . . . . . . . . 15 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝑧 +R 𝐴) +R 𝑥) ∈ R)
4714a1i 9 . . . . . . . . . . . . . . 15 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → -1RR)
4818, 43, 46, 47, 28caovord2d 5670 . . . . . . . . . . . . . 14 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝐹𝑖) +R 1R) <R ((𝑧 +R 𝐴) +R 𝑥) ↔ (((𝐹𝑖) +R 1R) +R -1R) <R (((𝑧 +R 𝐴) +R 𝑥) +R -1R)))
4941a1i 9 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → 1RR)
50 addasssrg 6839 . . . . . . . . . . . . . . . . 17 (((𝐹𝑖) ∈ R ∧ 1RR ∧ -1RR) → (((𝐹𝑖) +R 1R) +R -1R) = ((𝐹𝑖) +R (1R +R -1R)))
5140, 49, 47, 50syl3anc 1135 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝐹𝑖) +R 1R) +R -1R) = ((𝐹𝑖) +R (1R +R -1R)))
52 addcomsrg 6838 . . . . . . . . . . . . . . . . . . . 20 ((1RR ∧ -1RR) → (1R +R -1R) = (-1R +R 1R))
5341, 14, 52mp2an 402 . . . . . . . . . . . . . . . . . . 19 (1R +R -1R) = (-1R +R 1R)
54 m1p1sr 6843 . . . . . . . . . . . . . . . . . . 19 (-1R +R 1R) = 0R
5553, 54eqtri 2060 . . . . . . . . . . . . . . . . . 18 (1R +R -1R) = 0R
5655oveq2i 5523 . . . . . . . . . . . . . . . . 17 ((𝐹𝑖) +R (1R +R -1R)) = ((𝐹𝑖) +R 0R)
57 0idsr 6850 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑖) ∈ R → ((𝐹𝑖) +R 0R) = (𝐹𝑖))
5840, 57syl 14 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝐹𝑖) +R 0R) = (𝐹𝑖))
5956, 58syl5eq 2084 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝐹𝑖) +R (1R +R -1R)) = (𝐹𝑖))
6051, 59eqtrd 2072 . . . . . . . . . . . . . . 15 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝐹𝑖) +R 1R) +R -1R) = (𝐹𝑖))
6144, 23, 47, 28, 36caov32d 5681 . . . . . . . . . . . . . . 15 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝑧 +R 𝐴) +R 𝑥) +R -1R) = (((𝑧 +R 𝐴) +R -1R) +R 𝑥))
6260, 61breq12d 3777 . . . . . . . . . . . . . 14 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((((𝐹𝑖) +R 1R) +R -1R) <R (((𝑧 +R 𝐴) +R 𝑥) +R -1R) ↔ (𝐹𝑖) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥)))
6348, 62bitrd 177 . . . . . . . . . . . . 13 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝐹𝑖) +R 1R) <R ((𝑧 +R 𝐴) +R 𝑥) ↔ (𝐹𝑖) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥)))
6434, 38, 633bitrd 203 . . . . . . . . . . . 12 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝐺𝑖) <R (𝑧 +R 𝑥) ↔ (𝐹𝑖) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥)))
6564biimpd 132 . . . . . . . . . . 11 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝐺𝑖) <R (𝑧 +R 𝑥) → (𝐹𝑖) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥)))
66 addclsr 6836 . . . . . . . . . . . . . . . 16 (((𝐺𝑖) ∈ R𝑥R) → ((𝐺𝑖) +R 𝑥) ∈ R)
6721, 23, 66syl2anc 391 . . . . . . . . . . . . . . 15 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝐺𝑖) +R 𝑥) ∈ R)
6818, 22, 67, 26, 28caovord2d 5670 . . . . . . . . . . . . . 14 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (𝑧 <R ((𝐺𝑖) +R 𝑥) ↔ (𝑧 +R 𝐴) <R (((𝐺𝑖) +R 𝑥) +R 𝐴)))
6921, 23, 26, 28, 36caov32d 5681 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝐺𝑖) +R 𝑥) +R 𝐴) = (((𝐺𝑖) +R 𝐴) +R 𝑥))
7032oveq1d 5527 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝐺𝑖) +R 𝐴) +R 𝑥) = (((𝐹𝑖) +R 1R) +R 𝑥))
7169, 70eqtrd 2072 . . . . . . . . . . . . . . 15 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝐺𝑖) +R 𝑥) +R 𝐴) = (((𝐹𝑖) +R 1R) +R 𝑥))
7271breq2d 3776 . . . . . . . . . . . . . 14 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝑧 +R 𝐴) <R (((𝐺𝑖) +R 𝑥) +R 𝐴) ↔ (𝑧 +R 𝐴) <R (((𝐹𝑖) +R 1R) +R 𝑥)))
7368, 72bitrd 177 . . . . . . . . . . . . 13 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (𝑧 <R ((𝐺𝑖) +R 𝑥) ↔ (𝑧 +R 𝐴) <R (((𝐹𝑖) +R 1R) +R 𝑥)))
74 addclsr 6836 . . . . . . . . . . . . . . 15 ((((𝐹𝑖) +R 1R) ∈ R𝑥R) → (((𝐹𝑖) +R 1R) +R 𝑥) ∈ R)
7543, 23, 74syl2anc 391 . . . . . . . . . . . . . 14 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝐹𝑖) +R 1R) +R 𝑥) ∈ R)
7618, 44, 75, 47, 28caovord2d 5670 . . . . . . . . . . . . 13 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝑧 +R 𝐴) <R (((𝐹𝑖) +R 1R) +R 𝑥) ↔ ((𝑧 +R 𝐴) +R -1R) <R ((((𝐹𝑖) +R 1R) +R 𝑥) +R -1R)))
7740, 49, 23, 28, 36caov32d 5681 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝐹𝑖) +R 1R) +R 𝑥) = (((𝐹𝑖) +R 𝑥) +R 1R))
7877oveq1d 5527 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((((𝐹𝑖) +R 1R) +R 𝑥) +R -1R) = ((((𝐹𝑖) +R 𝑥) +R 1R) +R -1R))
79 addclsr 6836 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑖) ∈ R𝑥R) → ((𝐹𝑖) +R 𝑥) ∈ R)
8040, 23, 79syl2anc 391 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝐹𝑖) +R 𝑥) ∈ R)
81 addasssrg 6839 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑖) +R 𝑥) ∈ R ∧ 1RR ∧ -1RR) → ((((𝐹𝑖) +R 𝑥) +R 1R) +R -1R) = (((𝐹𝑖) +R 𝑥) +R (1R +R -1R)))
8280, 49, 47, 81syl3anc 1135 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((((𝐹𝑖) +R 𝑥) +R 1R) +R -1R) = (((𝐹𝑖) +R 𝑥) +R (1R +R -1R)))
8378, 82eqtrd 2072 . . . . . . . . . . . . . . . 16 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((((𝐹𝑖) +R 1R) +R 𝑥) +R -1R) = (((𝐹𝑖) +R 𝑥) +R (1R +R -1R)))
8455oveq2i 5523 . . . . . . . . . . . . . . . 16 (((𝐹𝑖) +R 𝑥) +R (1R +R -1R)) = (((𝐹𝑖) +R 𝑥) +R 0R)
8583, 84syl6eq 2088 . . . . . . . . . . . . . . 15 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((((𝐹𝑖) +R 1R) +R 𝑥) +R -1R) = (((𝐹𝑖) +R 𝑥) +R 0R))
86 0idsr 6850 . . . . . . . . . . . . . . . 16 (((𝐹𝑖) +R 𝑥) ∈ R → (((𝐹𝑖) +R 𝑥) +R 0R) = ((𝐹𝑖) +R 𝑥))
8780, 86syl 14 . . . . . . . . . . . . . . 15 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝐹𝑖) +R 𝑥) +R 0R) = ((𝐹𝑖) +R 𝑥))
8885, 87eqtrd 2072 . . . . . . . . . . . . . 14 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((((𝐹𝑖) +R 1R) +R 𝑥) +R -1R) = ((𝐹𝑖) +R 𝑥))
8988breq2d 3776 . . . . . . . . . . . . 13 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝑧 +R 𝐴) +R -1R) <R ((((𝐹𝑖) +R 1R) +R 𝑥) +R -1R) ↔ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑖) +R 𝑥)))
9073, 76, 893bitrd 203 . . . . . . . . . . . 12 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (𝑧 <R ((𝐺𝑖) +R 𝑥) ↔ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑖) +R 𝑥)))
9190biimpd 132 . . . . . . . . . . 11 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (𝑧 <R ((𝐺𝑖) +R 𝑥) → ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑖) +R 𝑥)))
9265, 91anim12d 318 . . . . . . . . . 10 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → (((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥)) → ((𝐹𝑖) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑖) +R 𝑥))))
9392imim2d 48 . . . . . . . . 9 ((((𝜑𝑧R) ∧ 𝑥R) ∧ 𝑖N) → ((𝑗 <N 𝑖 → ((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥))) → (𝑗 <N 𝑖 → ((𝐹𝑖) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑖) +R 𝑥)))))
9493ralimdva 2387 . . . . . . . 8 (((𝜑𝑧R) ∧ 𝑥R) → (∀𝑖N (𝑗 <N 𝑖 → ((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥))) → ∀𝑖N (𝑗 <N 𝑖 → ((𝐹𝑖) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑖) +R 𝑥)))))
95 breq2 3768 . . . . . . . . . 10 (𝑖 = 𝑘 → (𝑗 <N 𝑖𝑗 <N 𝑘))
96 fveq2 5178 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝐹𝑖) = (𝐹𝑘))
9796breq1d 3774 . . . . . . . . . . 11 (𝑖 = 𝑘 → ((𝐹𝑖) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ↔ (𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥)))
9896oveq1d 5527 . . . . . . . . . . . 12 (𝑖 = 𝑘 → ((𝐹𝑖) +R 𝑥) = ((𝐹𝑘) +R 𝑥))
9998breq2d 3776 . . . . . . . . . . 11 (𝑖 = 𝑘 → (((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑖) +R 𝑥) ↔ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥)))
10097, 99anbi12d 442 . . . . . . . . . 10 (𝑖 = 𝑘 → (((𝐹𝑖) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑖) +R 𝑥)) ↔ ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥))))
10195, 100imbi12d 223 . . . . . . . . 9 (𝑖 = 𝑘 → ((𝑗 <N 𝑖 → ((𝐹𝑖) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑖) +R 𝑥))) ↔ (𝑗 <N 𝑘 → ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥)))))
102101cbvralv 2533 . . . . . . . 8 (∀𝑖N (𝑗 <N 𝑖 → ((𝐹𝑖) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑖) +R 𝑥))) ↔ ∀𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥))))
10394, 102syl6ib 150 . . . . . . 7 (((𝜑𝑧R) ∧ 𝑥R) → (∀𝑖N (𝑗 <N 𝑖 → ((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥))) → ∀𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥)))))
104103reximdv 2420 . . . . . 6 (((𝜑𝑧R) ∧ 𝑥R) → (∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥))) → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥)))))
105104imim2d 48 . . . . 5 (((𝜑𝑧R) ∧ 𝑥R) → ((0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥)))) → (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥))))))
106105ralimdva 2387 . . . 4 ((𝜑𝑧R) → (∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥)))) → ∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥))))))
107106impr 361 . . 3 ((𝜑 ∧ (𝑧R ∧ ∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥)))))) → ∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥)))))
108 oveq1 5519 . . . . . . . . . 10 (𝑦 = ((𝑧 +R 𝐴) +R -1R) → (𝑦 +R 𝑥) = (((𝑧 +R 𝐴) +R -1R) +R 𝑥))
109108breq2d 3776 . . . . . . . . 9 (𝑦 = ((𝑧 +R 𝐴) +R -1R) → ((𝐹𝑘) <R (𝑦 +R 𝑥) ↔ (𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥)))
110 breq1 3767 . . . . . . . . 9 (𝑦 = ((𝑧 +R 𝐴) +R -1R) → (𝑦 <R ((𝐹𝑘) +R 𝑥) ↔ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥)))
111109, 110anbi12d 442 . . . . . . . 8 (𝑦 = ((𝑧 +R 𝐴) +R -1R) → (((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)) ↔ ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥))))
112111imbi2d 219 . . . . . . 7 (𝑦 = ((𝑧 +R 𝐴) +R -1R) → ((𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥))) ↔ (𝑗 <N 𝑘 → ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥)))))
113112rexralbidv 2350 . . . . . 6 (𝑦 = ((𝑧 +R 𝐴) +R -1R) → (∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥))) ↔ ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥)))))
114113imbi2d 219 . . . . 5 (𝑦 = ((𝑧 +R 𝐴) +R -1R) → ((0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))) ↔ (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥))))))
115114ralbidv 2326 . . . 4 (𝑦 = ((𝑧 +R 𝐴) +R -1R) → (∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))) ↔ ∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥))))))
116115rspcev 2656 . . 3 ((((𝑧 +R 𝐴) +R -1R) ∈ R ∧ ∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (((𝑧 +R 𝐴) +R -1R) +R 𝑥) ∧ ((𝑧 +R 𝐴) +R -1R) <R ((𝐹𝑘) +R 𝑥))))) → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
11716, 107, 116syl2anc 391 . 2 ((𝜑 ∧ (𝑧R ∧ ∀𝑥R (0R <R 𝑥 → ∃𝑗N𝑖N (𝑗 <N 𝑖 → ((𝐺𝑖) <R (𝑧 +R 𝑥) ∧ 𝑧 <R ((𝐺𝑖) +R 𝑥)))))) → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
1188, 117rexlimddv 2437 1 (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3a 885   = wceq 1243  wcel 1393  {cab 2026  wral 2306  wrex 2307  cop 3378   class class class wbr 3764  cmpt 3818  wf 4898  cfv 4902  (class class class)co 5512  1𝑜c1o 5994  [cec 6104  Ncnpi 6368   <N clti 6371   ~Q ceq 6375  *Qcrq 6380   <Q cltq 6381  1Pc1p 6388   +P cpp 6389   ~R cer 6392  Rcnr 6393  0Rc0r 6394  1Rc1r 6395  -1Rcm1r 6396   +R cplr 6397   ·R cmr 6398   <R cltr 6399
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6400  df-pli 6401  df-mi 6402  df-lti 6403  df-plpq 6440  df-mpq 6441  df-enq 6443  df-nqqs 6444  df-plqqs 6445  df-mqqs 6446  df-1nqqs 6447  df-rq 6448  df-ltnqqs 6449  df-enq0 6520  df-nq0 6521  df-0nq0 6522  df-plq0 6523  df-mq0 6524  df-inp 6562  df-i1p 6563  df-iplp 6564  df-imp 6565  df-iltp 6566  df-enr 6809  df-nr 6810  df-plr 6811  df-mr 6812  df-ltr 6813  df-0r 6814  df-1r 6815  df-m1r 6816
This theorem is referenced by:  caucvgsrlembnd  6883
  Copyright terms: Public domain W3C validator