Users' Mathboxes Mathbox for Jim Kingdon < Previous   Wrap >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  qdencn GIF version

Theorem qdencn 10124
Description: The set of complex numbers whose real and imaginary parts are rational is dense in the complex plane. This is a two dimensional analogue to qdenre 9798 (and also would hold for ℝ × ℝ with the usual metric; this is not about complex numbers in particular). (Contributed by Jim Kingdon, 18-Oct-2021.)
Hypothesis
Ref Expression
qdencn.q 𝑄 = {𝑧 ∈ ℂ ∣ ((ℜ‘𝑧) ∈ ℚ ∧ (ℑ‘𝑧) ∈ ℚ)}
Assertion
Ref Expression
qdencn ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑄
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑧)   𝑄(𝑧)

Proof of Theorem qdencn
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 102 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ)
21recld 9538 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (ℜ‘𝐴) ∈ ℝ)
3 simpr 103 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
43rphalfcld 8635 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → (𝐵 / 2) ∈ ℝ+)
5 qdenre 9798 . . 3 (((ℜ‘𝐴) ∈ ℝ ∧ (𝐵 / 2) ∈ ℝ+) → ∃𝑢 ∈ ℚ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))
62, 4, 5syl2anc 391 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → ∃𝑢 ∈ ℚ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))
7 simpll 481 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → 𝐴 ∈ ℂ)
87imcld 9539 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → (ℑ‘𝐴) ∈ ℝ)
94adantr 261 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → (𝐵 / 2) ∈ ℝ+)
10 qdenre 9798 . . . 4 (((ℑ‘𝐴) ∈ ℝ ∧ (𝐵 / 2) ∈ ℝ+) → ∃𝑣 ∈ ℚ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))
118, 9, 10syl2anc 391 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → ∃𝑣 ∈ ℚ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))
12 qcn 8569 . . . . . . . 8 (𝑢 ∈ ℚ → 𝑢 ∈ ℂ)
1312ad2antrl 459 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → 𝑢 ∈ ℂ)
1413adantr 261 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑢 ∈ ℂ)
15 ax-icn 6979 . . . . . . . 8 i ∈ ℂ
1615a1i 9 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → i ∈ ℂ)
17 qcn 8569 . . . . . . . 8 (𝑣 ∈ ℚ → 𝑣 ∈ ℂ)
1817ad2antrl 459 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑣 ∈ ℂ)
1916, 18mulcld 7047 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (i · 𝑣) ∈ ℂ)
2014, 19addcld 7046 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (𝑢 + (i · 𝑣)) ∈ ℂ)
21 qre 8560 . . . . . . . . . 10 (𝑢 ∈ ℚ → 𝑢 ∈ ℝ)
2221ad2antrl 459 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → 𝑢 ∈ ℝ)
2322adantr 261 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑢 ∈ ℝ)
24 qre 8560 . . . . . . . . 9 (𝑣 ∈ ℚ → 𝑣 ∈ ℝ)
2524ad2antrl 459 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑣 ∈ ℝ)
2623, 25crred 9576 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℜ‘(𝑢 + (i · 𝑣))) = 𝑢)
27 simplrl 487 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑢 ∈ ℚ)
2826, 27eqeltrd 2114 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℜ‘(𝑢 + (i · 𝑣))) ∈ ℚ)
2923, 25crimd 9577 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℑ‘(𝑢 + (i · 𝑣))) = 𝑣)
30 simprl 483 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝑣 ∈ ℚ)
3129, 30eqeltrd 2114 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℑ‘(𝑢 + (i · 𝑣))) ∈ ℚ)
3228, 31jca 290 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((ℜ‘(𝑢 + (i · 𝑣))) ∈ ℚ ∧ (ℑ‘(𝑢 + (i · 𝑣))) ∈ ℚ))
33 fveq2 5178 . . . . . . . 8 (𝑧 = (𝑢 + (i · 𝑣)) → (ℜ‘𝑧) = (ℜ‘(𝑢 + (i · 𝑣))))
3433eleq1d 2106 . . . . . . 7 (𝑧 = (𝑢 + (i · 𝑣)) → ((ℜ‘𝑧) ∈ ℚ ↔ (ℜ‘(𝑢 + (i · 𝑣))) ∈ ℚ))
35 fveq2 5178 . . . . . . . 8 (𝑧 = (𝑢 + (i · 𝑣)) → (ℑ‘𝑧) = (ℑ‘(𝑢 + (i · 𝑣))))
3635eleq1d 2106 . . . . . . 7 (𝑧 = (𝑢 + (i · 𝑣)) → ((ℑ‘𝑧) ∈ ℚ ↔ (ℑ‘(𝑢 + (i · 𝑣))) ∈ ℚ))
3734, 36anbi12d 442 . . . . . 6 (𝑧 = (𝑢 + (i · 𝑣)) → (((ℜ‘𝑧) ∈ ℚ ∧ (ℑ‘𝑧) ∈ ℚ) ↔ ((ℜ‘(𝑢 + (i · 𝑣))) ∈ ℚ ∧ (ℑ‘(𝑢 + (i · 𝑣))) ∈ ℚ)))
38 qdencn.q . . . . . 6 𝑄 = {𝑧 ∈ ℂ ∣ ((ℜ‘𝑧) ∈ ℚ ∧ (ℑ‘𝑧) ∈ ℚ)}
3937, 38elrab2 2700 . . . . 5 ((𝑢 + (i · 𝑣)) ∈ 𝑄 ↔ ((𝑢 + (i · 𝑣)) ∈ ℂ ∧ ((ℜ‘(𝑢 + (i · 𝑣))) ∈ ℚ ∧ (ℑ‘(𝑢 + (i · 𝑣))) ∈ ℚ)))
4020, 32, 39sylanbrc 394 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (𝑢 + (i · 𝑣)) ∈ 𝑄)
417adantr 261 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝐴 ∈ ℂ)
4220, 41subcld 7322 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((𝑢 + (i · 𝑣)) − 𝐴) ∈ ℂ)
4342abscld 9777 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) ∈ ℝ)
442ad2antrr 457 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℜ‘𝐴) ∈ ℝ)
4544recnd 7054 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℜ‘𝐴) ∈ ℂ)
4614, 45subcld 7322 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (𝑢 − (ℜ‘𝐴)) ∈ ℂ)
4746abscld 9777 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(𝑢 − (ℜ‘𝐴))) ∈ ℝ)
488adantr 261 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℑ‘𝐴) ∈ ℝ)
4948recnd 7054 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (ℑ‘𝐴) ∈ ℂ)
5018, 49subcld 7322 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (𝑣 − (ℑ‘𝐴)) ∈ ℂ)
5150abscld 9777 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(𝑣 − (ℑ‘𝐴))) ∈ ℝ)
5247, 51readdcld 7055 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘(𝑣 − (ℑ‘𝐴)))) ∈ ℝ)
533ad2antrr 457 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝐵 ∈ ℝ+)
5453rpred 8622 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → 𝐵 ∈ ℝ)
551replimd 9541 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
5655oveq2d 5528 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → ((𝑢 + (i · 𝑣)) − 𝐴) = ((𝑢 + (i · 𝑣)) − ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
5756ad2antrr 457 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((𝑢 + (i · 𝑣)) − 𝐴) = ((𝑢 + (i · 𝑣)) − ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
5816, 49mulcld 7047 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (i · (ℑ‘𝐴)) ∈ ℂ)
5914, 19, 45, 58addsub4d 7369 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((𝑢 + (i · 𝑣)) − ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((𝑢 − (ℜ‘𝐴)) + ((i · 𝑣) − (i · (ℑ‘𝐴)))))
6057, 59eqtrd 2072 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((𝑢 + (i · 𝑣)) − 𝐴) = ((𝑢 − (ℜ‘𝐴)) + ((i · 𝑣) − (i · (ℑ‘𝐴)))))
6160fveq2d 5182 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) = (abs‘((𝑢 − (ℜ‘𝐴)) + ((i · 𝑣) − (i · (ℑ‘𝐴))))))
6219, 58subcld 7322 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((i · 𝑣) − (i · (ℑ‘𝐴))) ∈ ℂ)
6346, 62abstrid 9792 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 − (ℜ‘𝐴)) + ((i · 𝑣) − (i · (ℑ‘𝐴))))) ≤ ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘((i · 𝑣) − (i · (ℑ‘𝐴))))))
6461, 63eqbrtrd 3784 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) ≤ ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘((i · 𝑣) − (i · (ℑ‘𝐴))))))
6516, 50absmuld 9790 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(i · (𝑣 − (ℑ‘𝐴)))) = ((abs‘i) · (abs‘(𝑣 − (ℑ‘𝐴)))))
6616, 18, 49subdid 7411 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (i · (𝑣 − (ℑ‘𝐴))) = ((i · 𝑣) − (i · (ℑ‘𝐴))))
6766fveq2d 5182 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(i · (𝑣 − (ℑ‘𝐴)))) = (abs‘((i · 𝑣) − (i · (ℑ‘𝐴)))))
68 absi 9657 . . . . . . . . . 10 (abs‘i) = 1
6968oveq1i 5522 . . . . . . . . 9 ((abs‘i) · (abs‘(𝑣 − (ℑ‘𝐴)))) = (1 · (abs‘(𝑣 − (ℑ‘𝐴))))
7051recnd 7054 . . . . . . . . . 10 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(𝑣 − (ℑ‘𝐴))) ∈ ℂ)
7170mulid2d 7045 . . . . . . . . 9 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (1 · (abs‘(𝑣 − (ℑ‘𝐴)))) = (abs‘(𝑣 − (ℑ‘𝐴))))
7269, 71syl5eq 2084 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((abs‘i) · (abs‘(𝑣 − (ℑ‘𝐴)))) = (abs‘(𝑣 − (ℑ‘𝐴))))
7365, 67, 723eqtr3d 2080 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((i · 𝑣) − (i · (ℑ‘𝐴)))) = (abs‘(𝑣 − (ℑ‘𝐴))))
7473oveq2d 5528 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘((i · 𝑣) − (i · (ℑ‘𝐴))))) = ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘(𝑣 − (ℑ‘𝐴)))))
7564, 74breqtrd 3788 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) ≤ ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘(𝑣 − (ℑ‘𝐴)))))
76 simplrr 488 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))
77 simprr 484 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))
7847, 51, 54, 76, 77lt2halvesd 8172 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ((abs‘(𝑢 − (ℜ‘𝐴))) + (abs‘(𝑣 − (ℑ‘𝐴)))) < 𝐵)
7943, 52, 54, 75, 78lelttrd 7139 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) < 𝐵)
80 oveq1 5519 . . . . . . 7 (𝑥 = (𝑢 + (i · 𝑣)) → (𝑥𝐴) = ((𝑢 + (i · 𝑣)) − 𝐴))
8180fveq2d 5182 . . . . . 6 (𝑥 = (𝑢 + (i · 𝑣)) → (abs‘(𝑥𝐴)) = (abs‘((𝑢 + (i · 𝑣)) − 𝐴)))
8281breq1d 3774 . . . . 5 (𝑥 = (𝑢 + (i · 𝑣)) → ((abs‘(𝑥𝐴)) < 𝐵 ↔ (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) < 𝐵))
8382rspcev 2656 . . . 4 (((𝑢 + (i · 𝑣)) ∈ 𝑄 ∧ (abs‘((𝑢 + (i · 𝑣)) − 𝐴)) < 𝐵) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
8440, 79, 83syl2anc 391 . . 3 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) ∧ (𝑣 ∈ ℚ ∧ (abs‘(𝑣 − (ℑ‘𝐴))) < (𝐵 / 2))) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
8511, 84rexlimddv 2437 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) ∧ (𝑢 ∈ ℚ ∧ (abs‘(𝑢 − (ℜ‘𝐴))) < (𝐵 / 2))) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
866, 85rexlimddv 2437 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ+) → ∃𝑥𝑄 (abs‘(𝑥𝐴)) < 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  wcel 1393  wrex 2307  {crab 2310   class class class wbr 3764  cfv 4902  (class class class)co 5512  cc 6887  cr 6888  1c1 6890  ici 6891   + caddc 6892   · cmul 6894   < clt 7060  cle 7061  cmin 7182   / cdiv 7651  2c2 7964  cq 8554  +crp 8583  cre 9440  cim 9441  abscabs 9595
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002  ax-arch 7003  ax-caucvg 7004
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-2 7973  df-3 7974  df-4 7975  df-n0 8182  df-z 8246  df-uz 8474  df-q 8555  df-rp 8584  df-iseq 9212  df-iexp 9255  df-cj 9442  df-re 9443  df-im 9444  df-rsqrt 9596  df-abs 9597
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator