ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulcom GIF version

Axiom ax-mulcom 6966
Description: Multiplication of complex numbers is commutative. Axiom for real and complex numbers, justified by theorem axmulcom 6926. Proofs should normally use mulcom 6991 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulcom ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))

Detailed syntax breakdown of Axiom ax-mulcom
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 6868 . . . 4 class
31, 2wcel 1393 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 1393 . . 3 wff 𝐵 ∈ ℂ
63, 5wa 97 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)
7 cmul 6875 . . . 4 class ·
81, 4, 7co 5499 . . 3 class (𝐴 · 𝐵)
94, 1, 7co 5499 . . 3 class (𝐵 · 𝐴)
108, 9wceq 1243 . 2 wff (𝐴 · 𝐵) = (𝐵 · 𝐴)
116, 10wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
Colors of variables: wff set class
This axiom is referenced by:  mulcom  6991
  Copyright terms: Public domain W3C validator