Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-addass GIF version

 Description: Addition of complex numbers is associative. Axiom for real and complex numbers, justified by theorem axaddass 6946. Proofs should normally use addass 7011 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-addass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))

Detailed syntax breakdown of Axiom ax-addass
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 6887 . . . 4 class
31, 2wcel 1393 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 1393 . . 3 wff 𝐵 ∈ ℂ
6 cC . . . 4 class 𝐶
76, 2wcel 1393 . . 3 wff 𝐶 ∈ ℂ
83, 5, 7w3a 885 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)
9 caddc 6892 . . . . 5 class +
101, 4, 9co 5512 . . . 4 class (𝐴 + 𝐵)
1110, 6, 9co 5512 . . 3 class ((𝐴 + 𝐵) + 𝐶)
124, 6, 9co 5512 . . . 4 class (𝐵 + 𝐶)
131, 12, 9co 5512 . . 3 class (𝐴 + (𝐵 + 𝐶))
1411, 13wceq 1243 . 2 wff ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))
158, 14wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
 Colors of variables: wff set class This axiom is referenced by:  addass  7011
 Copyright terms: Public domain W3C validator