Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-addass | GIF version |
Description: Addition of complex numbers is associative. Axiom for real and complex numbers, justified by theorem axaddass 6946. Proofs should normally use addass 7011 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 6887 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 1393 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 1393 | . . 3 wff 𝐵 ∈ ℂ |
6 | cC | . . . 4 class 𝐶 | |
7 | 6, 2 | wcel 1393 | . . 3 wff 𝐶 ∈ ℂ |
8 | 3, 5, 7 | w3a 885 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) |
9 | caddc 6892 | . . . . 5 class + | |
10 | 1, 4, 9 | co 5512 | . . . 4 class (𝐴 + 𝐵) |
11 | 10, 6, 9 | co 5512 | . . 3 class ((𝐴 + 𝐵) + 𝐶) |
12 | 4, 6, 9 | co 5512 | . . . 4 class (𝐵 + 𝐶) |
13 | 1, 12, 9 | co 5512 | . . 3 class (𝐴 + (𝐵 + 𝐶)) |
14 | 11, 13 | wceq 1243 | . 2 wff ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) |
15 | 8, 14 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Colors of variables: wff set class |
This axiom is referenced by: addass 7011 |
Copyright terms: Public domain | W3C validator |