Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-mulass Structured version   GIF version

Axiom ax-mulass 6766
 Description: Multiplication of complex numbers is associative. Axiom for real and complex numbers, justified by theorem axmulass 6737. Proofs should normally use mulass 6790 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulass ((A B 𝐶 ℂ) → ((A · B) · 𝐶) = (A · (B · 𝐶)))

Detailed syntax breakdown of Axiom ax-mulass
StepHypRef Expression
1 cA . . . 4 class A
2 cc 6689 . . . 4 class
31, 2wcel 1390 . . 3 wff A
4 cB . . . 4 class B
54, 2wcel 1390 . . 3 wff B
6 cC . . . 4 class 𝐶
76, 2wcel 1390 . . 3 wff 𝐶
83, 5, 7w3a 884 . 2 wff (A B 𝐶 ℂ)
9 cmul 6696 . . . . 5 class ·
101, 4, 9co 5455 . . . 4 class (A · B)
1110, 6, 9co 5455 . . 3 class ((A · B) · 𝐶)
124, 6, 9co 5455 . . . 4 class (B · 𝐶)
131, 12, 9co 5455 . . 3 class (A · (B · 𝐶))
1411, 13wceq 1242 . 2 wff ((A · B) · 𝐶) = (A · (B · 𝐶))
158, 14wi 4 1 wff ((A B 𝐶 ℂ) → ((A · B) · 𝐶) = (A · (B · 𝐶)))
 Colors of variables: wff set class This axiom is referenced by:  mulass  6790
 Copyright terms: Public domain W3C validator