ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axmulass GIF version

Theorem axmulass 6947
Description: Multiplication of complex numbers is associative. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-mulass 6987. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axmulass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))

Proof of Theorem axmulass
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcnqs 6917 . 2 ℂ = ((R × R) / E )
2 mulcnsrec 6919 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ([⟨𝑥, 𝑦⟩] E · [⟨𝑧, 𝑤⟩] E ) = [⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩] E )
3 mulcnsrec 6919 . 2 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ([⟨𝑧, 𝑤⟩] E · [⟨𝑣, 𝑢⟩] E ) = [⟨((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))), ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))⟩] E )
4 mulcnsrec 6919 . 2 (((((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R ∧ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R) ∧ (𝑣R𝑢R)) → ([⟨((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))), ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤))⟩] E · [⟨𝑣, 𝑢⟩] E ) = [⟨((((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑣) +R (-1R ·R (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑢))), ((((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑣) +R (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑢))⟩] E )
5 mulcnsrec 6919 . 2 (((𝑥R𝑦R) ∧ (((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))) ∈ R ∧ ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)) ∈ R)) → ([⟨𝑥, 𝑦⟩] E · [⟨((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))), ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))⟩] E ) = [⟨((𝑥 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) +R (-1R ·R (𝑦 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))))), ((𝑦 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) +R (𝑥 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))))⟩] E )
6 mulclsr 6839 . . . . 5 ((𝑥R𝑧R) → (𝑥 ·R 𝑧) ∈ R)
7 m1r 6837 . . . . . 6 -1RR
8 mulclsr 6839 . . . . . 6 ((𝑦R𝑤R) → (𝑦 ·R 𝑤) ∈ R)
9 mulclsr 6839 . . . . . 6 ((-1RR ∧ (𝑦 ·R 𝑤) ∈ R) → (-1R ·R (𝑦 ·R 𝑤)) ∈ R)
107, 8, 9sylancr 393 . . . . 5 ((𝑦R𝑤R) → (-1R ·R (𝑦 ·R 𝑤)) ∈ R)
11 addclsr 6838 . . . . 5 (((𝑥 ·R 𝑧) ∈ R ∧ (-1R ·R (𝑦 ·R 𝑤)) ∈ R) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
126, 10, 11syl2an 273 . . . 4 (((𝑥R𝑧R) ∧ (𝑦R𝑤R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
1312an4s 522 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R)
14 mulclsr 6839 . . . . 5 ((𝑦R𝑧R) → (𝑦 ·R 𝑧) ∈ R)
15 mulclsr 6839 . . . . 5 ((𝑥R𝑤R) → (𝑥 ·R 𝑤) ∈ R)
16 addclsr 6838 . . . . 5 (((𝑦 ·R 𝑧) ∈ R ∧ (𝑥 ·R 𝑤) ∈ R) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
1714, 15, 16syl2anr 274 . . . 4 (((𝑥R𝑤R) ∧ (𝑦R𝑧R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
1817an42s 523 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R)
1913, 18jca 290 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ∈ R ∧ ((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ∈ R))
20 mulclsr 6839 . . . . 5 ((𝑧R𝑣R) → (𝑧 ·R 𝑣) ∈ R)
21 mulclsr 6839 . . . . . 6 ((𝑤R𝑢R) → (𝑤 ·R 𝑢) ∈ R)
22 mulclsr 6839 . . . . . 6 ((-1RR ∧ (𝑤 ·R 𝑢) ∈ R) → (-1R ·R (𝑤 ·R 𝑢)) ∈ R)
237, 21, 22sylancr 393 . . . . 5 ((𝑤R𝑢R) → (-1R ·R (𝑤 ·R 𝑢)) ∈ R)
24 addclsr 6838 . . . . 5 (((𝑧 ·R 𝑣) ∈ R ∧ (-1R ·R (𝑤 ·R 𝑢)) ∈ R) → ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))) ∈ R)
2520, 23, 24syl2an 273 . . . 4 (((𝑧R𝑣R) ∧ (𝑤R𝑢R)) → ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))) ∈ R)
2625an4s 522 . . 3 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))) ∈ R)
27 mulclsr 6839 . . . . 5 ((𝑤R𝑣R) → (𝑤 ·R 𝑣) ∈ R)
28 mulclsr 6839 . . . . 5 ((𝑧R𝑢R) → (𝑧 ·R 𝑢) ∈ R)
29 addclsr 6838 . . . . 5 (((𝑤 ·R 𝑣) ∈ R ∧ (𝑧 ·R 𝑢) ∈ R) → ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)) ∈ R)
3027, 28, 29syl2anr 274 . . . 4 (((𝑧R𝑢R) ∧ (𝑤R𝑣R)) → ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)) ∈ R)
3130an42s 523 . . 3 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)) ∈ R)
3226, 31jca 290 . 2 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢))) ∈ R ∧ ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)) ∈ R))
33 simp1l 928 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → 𝑥R)
34 simp2l 930 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → 𝑧R)
35 simp3l 932 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → 𝑣R)
3634, 35, 20syl2anc 391 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑧 ·R 𝑣) ∈ R)
37 mulclsr 6839 . . . . 5 ((𝑥R ∧ (𝑧 ·R 𝑣) ∈ R) → (𝑥 ·R (𝑧 ·R 𝑣)) ∈ R)
3833, 36, 37syl2anc 391 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑥 ·R (𝑧 ·R 𝑣)) ∈ R)
39 simp2r 931 . . . . . . 7 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → 𝑤R)
40 simp3r 933 . . . . . . 7 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → 𝑢R)
4139, 40, 21syl2anc 391 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑤 ·R 𝑢) ∈ R)
427, 41, 22sylancr 393 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R (𝑤 ·R 𝑢)) ∈ R)
43 mulclsr 6839 . . . . 5 ((𝑥R ∧ (-1R ·R (𝑤 ·R 𝑢)) ∈ R) → (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢))) ∈ R)
4433, 42, 43syl2anc 391 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢))) ∈ R)
45 simp1r 929 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → 𝑦R)
4639, 35, 27syl2anc 391 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑤 ·R 𝑣) ∈ R)
47 mulclsr 6839 . . . . . 6 ((𝑦R ∧ (𝑤 ·R 𝑣) ∈ R) → (𝑦 ·R (𝑤 ·R 𝑣)) ∈ R)
4845, 46, 47syl2anc 391 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑦 ·R (𝑤 ·R 𝑣)) ∈ R)
49 mulclsr 6839 . . . . 5 ((-1RR ∧ (𝑦 ·R (𝑤 ·R 𝑣)) ∈ R) → (-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))) ∈ R)
507, 48, 49sylancr 393 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))) ∈ R)
51 addcomsrg 6840 . . . . 5 ((𝑓R𝑔R) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓))
5251adantl 262 . . . 4 ((((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) ∧ (𝑓R𝑔R)) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓))
53 addasssrg 6841 . . . . 5 ((𝑓R𝑔RR) → ((𝑓 +R 𝑔) +R ) = (𝑓 +R (𝑔 +R )))
5453adantl 262 . . . 4 ((((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) ∧ (𝑓R𝑔RR)) → ((𝑓 +R 𝑔) +R ) = (𝑓 +R (𝑔 +R )))
5534, 40, 28syl2anc 391 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑧 ·R 𝑢) ∈ R)
56 mulclsr 6839 . . . . . 6 ((𝑦R ∧ (𝑧 ·R 𝑢) ∈ R) → (𝑦 ·R (𝑧 ·R 𝑢)) ∈ R)
5745, 55, 56syl2anc 391 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑦 ·R (𝑧 ·R 𝑢)) ∈ R)
58 mulclsr 6839 . . . . 5 ((-1RR ∧ (𝑦 ·R (𝑧 ·R 𝑢)) ∈ R) → (-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) ∈ R)
597, 57, 58sylancr 393 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) ∈ R)
60 addclsr 6838 . . . . 5 ((𝑓R𝑔R) → (𝑓 +R 𝑔) ∈ R)
6160adantl 262 . . . 4 ((((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) ∧ (𝑓R𝑔R)) → (𝑓 +R 𝑔) ∈ R)
6238, 44, 50, 52, 54, 59, 61caov42d 5687 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (((𝑥 ·R (𝑧 ·R 𝑣)) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢)))) +R ((-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))) +R (-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))))) = (((𝑥 ·R (𝑧 ·R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 ·R 𝑣)))) +R ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢))))))
63 distrsrg 6844 . . . . 5 ((𝑥R ∧ (𝑧 ·R 𝑣) ∈ R ∧ (-1R ·R (𝑤 ·R 𝑢)) ∈ R) → (𝑥 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) = ((𝑥 ·R (𝑧 ·R 𝑣)) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢)))))
6433, 36, 42, 63syl3anc 1135 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑥 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) = ((𝑥 ·R (𝑧 ·R 𝑣)) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢)))))
65 distrsrg 6844 . . . . . . 7 ((𝑦R ∧ (𝑤 ·R 𝑣) ∈ R ∧ (𝑧 ·R 𝑢) ∈ R) → (𝑦 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))) = ((𝑦 ·R (𝑤 ·R 𝑣)) +R (𝑦 ·R (𝑧 ·R 𝑢))))
6645, 46, 55, 65syl3anc 1135 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑦 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))) = ((𝑦 ·R (𝑤 ·R 𝑣)) +R (𝑦 ·R (𝑧 ·R 𝑢))))
6766oveq2d 5528 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R (𝑦 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)))) = (-1R ·R ((𝑦 ·R (𝑤 ·R 𝑣)) +R (𝑦 ·R (𝑧 ·R 𝑢)))))
687a1i 9 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → -1RR)
69 distrsrg 6844 . . . . . 6 ((-1RR ∧ (𝑦 ·R (𝑤 ·R 𝑣)) ∈ R ∧ (𝑦 ·R (𝑧 ·R 𝑢)) ∈ R) → (-1R ·R ((𝑦 ·R (𝑤 ·R 𝑣)) +R (𝑦 ·R (𝑧 ·R 𝑢)))) = ((-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))) +R (-1R ·R (𝑦 ·R (𝑧 ·R 𝑢)))))
7068, 48, 57, 69syl3anc 1135 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R ((𝑦 ·R (𝑤 ·R 𝑣)) +R (𝑦 ·R (𝑧 ·R 𝑢)))) = ((-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))) +R (-1R ·R (𝑦 ·R (𝑧 ·R 𝑢)))))
7167, 70eqtrd 2072 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R (𝑦 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)))) = ((-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))) +R (-1R ·R (𝑦 ·R (𝑧 ·R 𝑢)))))
7264, 71oveq12d 5530 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑥 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) +R (-1R ·R (𝑦 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))))) = (((𝑥 ·R (𝑧 ·R 𝑣)) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢)))) +R ((-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))) +R (-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))))))
73 mulcomsrg 6842 . . . . . . 7 ((𝑓R𝑔R) → (𝑓 ·R 𝑔) = (𝑔 ·R 𝑓))
7473adantl 262 . . . . . 6 ((((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) ∧ (𝑓R𝑔R)) → (𝑓 ·R 𝑔) = (𝑔 ·R 𝑓))
75 distrsrg 6844 . . . . . . . . 9 ((R𝑓R𝑔R) → ( ·R (𝑓 +R 𝑔)) = (( ·R 𝑓) +R ( ·R 𝑔)))
76753coml 1111 . . . . . . . 8 ((𝑓R𝑔RR) → ( ·R (𝑓 +R 𝑔)) = (( ·R 𝑓) +R ( ·R 𝑔)))
77 simp3 906 . . . . . . . . 9 ((𝑓R𝑔RR) → R)
78603adant3 924 . . . . . . . . 9 ((𝑓R𝑔RR) → (𝑓 +R 𝑔) ∈ R)
79 mulcomsrg 6842 . . . . . . . . 9 ((R ∧ (𝑓 +R 𝑔) ∈ R) → ( ·R (𝑓 +R 𝑔)) = ((𝑓 +R 𝑔) ·R ))
8077, 78, 79syl2anc 391 . . . . . . . 8 ((𝑓R𝑔RR) → ( ·R (𝑓 +R 𝑔)) = ((𝑓 +R 𝑔) ·R ))
81 simp1 904 . . . . . . . . . 10 ((𝑓R𝑔RR) → 𝑓R)
82 mulcomsrg 6842 . . . . . . . . . 10 ((R𝑓R) → ( ·R 𝑓) = (𝑓 ·R ))
8377, 81, 82syl2anc 391 . . . . . . . . 9 ((𝑓R𝑔RR) → ( ·R 𝑓) = (𝑓 ·R ))
84 simp2 905 . . . . . . . . . 10 ((𝑓R𝑔RR) → 𝑔R)
85 mulcomsrg 6842 . . . . . . . . . 10 ((R𝑔R) → ( ·R 𝑔) = (𝑔 ·R ))
8677, 84, 85syl2anc 391 . . . . . . . . 9 ((𝑓R𝑔RR) → ( ·R 𝑔) = (𝑔 ·R ))
8783, 86oveq12d 5530 . . . . . . . 8 ((𝑓R𝑔RR) → (( ·R 𝑓) +R ( ·R 𝑔)) = ((𝑓 ·R ) +R (𝑔 ·R )))
8876, 80, 873eqtr3d 2080 . . . . . . 7 ((𝑓R𝑔RR) → ((𝑓 +R 𝑔) ·R ) = ((𝑓 ·R ) +R (𝑔 ·R )))
8988adantl 262 . . . . . 6 ((((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) ∧ (𝑓R𝑔RR)) → ((𝑓 +R 𝑔) ·R ) = ((𝑓 ·R ) +R (𝑔 ·R )))
90 mulasssrg 6843 . . . . . . 7 ((𝑓R𝑔RR) → ((𝑓 ·R 𝑔) ·R ) = (𝑓 ·R (𝑔 ·R )))
9190adantl 262 . . . . . 6 ((((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) ∧ (𝑓R𝑔RR)) → ((𝑓 ·R 𝑔) ·R ) = (𝑓 ·R (𝑔 ·R )))
92 mulclsr 6839 . . . . . . 7 ((𝑓R𝑔R) → (𝑓 ·R 𝑔) ∈ R)
9392adantl 262 . . . . . 6 ((((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) ∧ (𝑓R𝑔R)) → (𝑓 ·R 𝑔) ∈ R)
9445, 39, 8syl2anc 391 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑦 ·R 𝑤) ∈ R)
9574, 89, 91, 93, 33, 68, 34, 94, 35caovdilemd 5692 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑣) = ((𝑥 ·R (𝑧 ·R 𝑣)) +R (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑣))))
96 mulasssrg 6843 . . . . . . . 8 ((𝑦R𝑤R𝑣R) → ((𝑦 ·R 𝑤) ·R 𝑣) = (𝑦 ·R (𝑤 ·R 𝑣)))
9745, 39, 35, 96syl3anc 1135 . . . . . . 7 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑦 ·R 𝑤) ·R 𝑣) = (𝑦 ·R (𝑤 ·R 𝑣)))
9897oveq2d 5528 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑣)) = (-1R ·R (𝑦 ·R (𝑤 ·R 𝑣))))
9998oveq2d 5528 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑥 ·R (𝑧 ·R 𝑣)) +R (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑣))) = ((𝑥 ·R (𝑧 ·R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 ·R 𝑣)))))
10095, 99eqtrd 2072 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑣) = ((𝑥 ·R (𝑧 ·R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 ·R 𝑣)))))
10174, 89, 91, 93, 45, 33, 34, 39, 40caovdilemd 5692 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑢) = ((𝑦 ·R (𝑧 ·R 𝑢)) +R (𝑥 ·R (𝑤 ·R 𝑢))))
102101oveq2d 5528 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑢)) = (-1R ·R ((𝑦 ·R (𝑧 ·R 𝑢)) +R (𝑥 ·R (𝑤 ·R 𝑢)))))
10393, 33, 41caovcld 5654 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑥 ·R (𝑤 ·R 𝑢)) ∈ R)
104 distrsrg 6844 . . . . . 6 ((-1RR ∧ (𝑦 ·R (𝑧 ·R 𝑢)) ∈ R ∧ (𝑥 ·R (𝑤 ·R 𝑢)) ∈ R) → (-1R ·R ((𝑦 ·R (𝑧 ·R 𝑢)) +R (𝑥 ·R (𝑤 ·R 𝑢)))) = ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (-1R ·R (𝑥 ·R (𝑤 ·R 𝑢)))))
10568, 57, 103, 104syl3anc 1135 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R ((𝑦 ·R (𝑧 ·R 𝑢)) +R (𝑥 ·R (𝑤 ·R 𝑢)))) = ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (-1R ·R (𝑥 ·R (𝑤 ·R 𝑢)))))
10668, 33, 41, 74, 91caov12d 5682 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R (𝑥 ·R (𝑤 ·R 𝑢))) = (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢))))
107106oveq2d 5528 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (-1R ·R (𝑥 ·R (𝑤 ·R 𝑢)))) = ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢)))))
108102, 105, 1073eqtrd 2076 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑢)) = ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢)))))
109100, 108oveq12d 5530 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑣) +R (-1R ·R (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑢))) = (((𝑥 ·R (𝑧 ·R 𝑣)) +R (-1R ·R (𝑦 ·R (𝑤 ·R 𝑣)))) +R ((-1R ·R (𝑦 ·R (𝑧 ·R 𝑢))) +R (𝑥 ·R (-1R ·R (𝑤 ·R 𝑢))))))
11062, 72, 1093eqtr4rd 2083 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑣) +R (-1R ·R (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑢))) = ((𝑥 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) +R (-1R ·R (𝑦 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))))))
11193, 45, 36caovcld 5654 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑦 ·R (𝑧 ·R 𝑣)) ∈ R)
11293, 45, 42caovcld 5654 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢))) ∈ R)
11393, 33, 46caovcld 5654 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑥 ·R (𝑤 ·R 𝑣)) ∈ R)
11493, 33, 55caovcld 5654 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑥 ·R (𝑧 ·R 𝑢)) ∈ R)
115111, 112, 113, 52, 54, 114, 61caov42d 5687 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (((𝑦 ·R (𝑧 ·R 𝑣)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢)))) +R ((𝑥 ·R (𝑤 ·R 𝑣)) +R (𝑥 ·R (𝑧 ·R 𝑢)))) = (((𝑦 ·R (𝑧 ·R 𝑣)) +R (𝑥 ·R (𝑤 ·R 𝑣))) +R ((𝑥 ·R (𝑧 ·R 𝑢)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢))))))
116 distrsrg 6844 . . . . 5 ((𝑦R ∧ (𝑧 ·R 𝑣) ∈ R ∧ (-1R ·R (𝑤 ·R 𝑢)) ∈ R) → (𝑦 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) = ((𝑦 ·R (𝑧 ·R 𝑣)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢)))))
11745, 36, 42, 116syl3anc 1135 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑦 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) = ((𝑦 ·R (𝑧 ·R 𝑣)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢)))))
118 distrsrg 6844 . . . . 5 ((𝑥R ∧ (𝑤 ·R 𝑣) ∈ R ∧ (𝑧 ·R 𝑢) ∈ R) → (𝑥 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))) = ((𝑥 ·R (𝑤 ·R 𝑣)) +R (𝑥 ·R (𝑧 ·R 𝑢))))
11933, 46, 55, 118syl3anc 1135 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (𝑥 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢))) = ((𝑥 ·R (𝑤 ·R 𝑣)) +R (𝑥 ·R (𝑧 ·R 𝑢))))
120117, 119oveq12d 5530 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑦 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) +R (𝑥 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)))) = (((𝑦 ·R (𝑧 ·R 𝑣)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢)))) +R ((𝑥 ·R (𝑤 ·R 𝑣)) +R (𝑥 ·R (𝑧 ·R 𝑢)))))
12174, 89, 91, 93, 45, 33, 34, 39, 35caovdilemd 5692 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑣) = ((𝑦 ·R (𝑧 ·R 𝑣)) +R (𝑥 ·R (𝑤 ·R 𝑣))))
12274, 89, 91, 93, 33, 68, 34, 94, 40caovdilemd 5692 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑢) = ((𝑥 ·R (𝑧 ·R 𝑢)) +R (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑢))))
123 mulasssrg 6843 . . . . . . . . 9 ((𝑦R𝑤R𝑢R) → ((𝑦 ·R 𝑤) ·R 𝑢) = (𝑦 ·R (𝑤 ·R 𝑢)))
12445, 39, 40, 123syl3anc 1135 . . . . . . . 8 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑦 ·R 𝑤) ·R 𝑢) = (𝑦 ·R (𝑤 ·R 𝑢)))
125124oveq2d 5528 . . . . . . 7 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑢)) = (-1R ·R (𝑦 ·R (𝑤 ·R 𝑢))))
12668, 45, 41, 74, 91caov12d 5682 . . . . . . 7 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R (𝑦 ·R (𝑤 ·R 𝑢))) = (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢))))
127125, 126eqtrd 2072 . . . . . 6 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑢)) = (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢))))
128127oveq2d 5528 . . . . 5 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑥 ·R (𝑧 ·R 𝑢)) +R (-1R ·R ((𝑦 ·R 𝑤) ·R 𝑢))) = ((𝑥 ·R (𝑧 ·R 𝑢)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢)))))
129122, 128eqtrd 2072 . . . 4 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑢) = ((𝑥 ·R (𝑧 ·R 𝑢)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢)))))
130121, 129oveq12d 5530 . . 3 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑣) +R (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑢)) = (((𝑦 ·R (𝑧 ·R 𝑣)) +R (𝑥 ·R (𝑤 ·R 𝑣))) +R ((𝑥 ·R (𝑧 ·R 𝑢)) +R (𝑦 ·R (-1R ·R (𝑤 ·R 𝑢))))))
131115, 120, 1303eqtr4rd 2083 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((((𝑦 ·R 𝑧) +R (𝑥 ·R 𝑤)) ·R 𝑣) +R (((𝑥 ·R 𝑧) +R (-1R ·R (𝑦 ·R 𝑤))) ·R 𝑢)) = ((𝑦 ·R ((𝑧 ·R 𝑣) +R (-1R ·R (𝑤 ·R 𝑢)))) +R (𝑥 ·R ((𝑤 ·R 𝑣) +R (𝑧 ·R 𝑢)))))
1321, 2, 3, 4, 5, 19, 32, 110, 131ecoviass 6216 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  w3a 885   = wceq 1243  wcel 1393   E cep 4024  ccnv 4344  (class class class)co 5512  Rcnr 6395  -1Rcm1r 6398   +R cplr 6399   ·R cmr 6400  cc 6887   · cmul 6894
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-imp 6567  df-enr 6811  df-nr 6812  df-plr 6813  df-mr 6814  df-m1r 6818  df-c 6895  df-mul 6901
This theorem is referenced by:  rereceu  6963  recriota  6964
  Copyright terms: Public domain W3C validator