![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp3r | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 103 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜃) | |
2 | 1 | 3ad2ant3 927 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∧ w3a 885 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 df-3an 887 |
This theorem is referenced by: simpl3r 960 simpr3r 966 simp13r 1020 simp23r 1026 simp33r 1032 issod 4056 tfisi 4310 fvun1 5239 f1oiso2 5466 tfrlem5 5930 ecopovtrn 6203 ecopovtrng 6206 addassnqg 6480 ltsonq 6496 ltanqg 6498 ltmnqg 6499 addassnq0 6560 mulasssrg 6843 distrsrg 6844 lttrsr 6847 ltsosr 6849 ltasrg 6855 mulextsr1lem 6864 mulextsr1 6865 axmulass 6947 axdistr 6948 reapmul1 7586 mulcanap 7646 mulcanap2 7647 divassap 7669 divdirap 7674 div11ap 7677 apmul1 7764 ltdiv1 7834 ltmuldiv 7840 ledivmul 7843 lemuldiv 7847 lediv2 7857 ltdiv23 7858 lediv23 7859 expaddzap 9299 expmulzap 9301 resqrtcl 9627 |
Copyright terms: Public domain | W3C validator |