Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-po Structured version   GIF version

Definition df-po 4024
 Description: Define the strict partial order predicate. Definition of [Enderton] p. 168. The expression 𝑅 Po A means 𝑅 is a partial order on A. (Contributed by NM, 16-Mar-1997.)
Assertion
Ref Expression
df-po (𝑅 Po Ax A y A z Ax𝑅x ((x𝑅y y𝑅z) → x𝑅z)))
Distinct variable groups:   x,y,z,𝑅   x,A,y,z

Detailed syntax breakdown of Definition df-po
StepHypRef Expression
1 cA . . 3 class A
2 cR . . 3 class 𝑅
31, 2wpo 4022 . 2 wff 𝑅 Po A
4 vx . . . . . . . . 9 setvar x
54cv 1241 . . . . . . . 8 class x
65, 5, 2wbr 3755 . . . . . . 7 wff x𝑅x
76wn 3 . . . . . 6 wff ¬ x𝑅x
8 vy . . . . . . . . . 10 setvar y
98cv 1241 . . . . . . . . 9 class y
105, 9, 2wbr 3755 . . . . . . . 8 wff x𝑅y
11 vz . . . . . . . . . 10 setvar z
1211cv 1241 . . . . . . . . 9 class z
139, 12, 2wbr 3755 . . . . . . . 8 wff y𝑅z
1410, 13wa 97 . . . . . . 7 wff (x𝑅y y𝑅z)
155, 12, 2wbr 3755 . . . . . . 7 wff x𝑅z
1614, 15wi 4 . . . . . 6 wff ((x𝑅y y𝑅z) → x𝑅z)
177, 16wa 97 . . . . 5 wff x𝑅x ((x𝑅y y𝑅z) → x𝑅z))
1817, 11, 1wral 2300 . . . 4 wff z Ax𝑅x ((x𝑅y y𝑅z) → x𝑅z))
1918, 8, 1wral 2300 . . 3 wff y A z Ax𝑅x ((x𝑅y y𝑅z) → x𝑅z))
2019, 4, 1wral 2300 . 2 wff x A y A z Ax𝑅x ((x𝑅y y𝑅z) → x𝑅z))
213, 20wb 98 1 wff (𝑅 Po Ax A y A z Ax𝑅x ((x𝑅y y𝑅z) → x𝑅z)))
 Colors of variables: wff set class This definition is referenced by:  poss  4026  poeq1  4027  nfpo  4029  pocl  4031  ispod  4032  po0  4039  poinxp  4352  posng  4355  cnvpom  4803  isopolem  5404  poxp  5794
 Copyright terms: Public domain W3C validator