ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  posng GIF version

Theorem posng 4412
Description: Partial ordering of a singleton. (Contributed by Jim Kingdon, 5-Dec-2018.)
Assertion
Ref Expression
posng ((Rel 𝑅𝐴 ∈ V) → (𝑅 Po {𝐴} ↔ ¬ 𝐴𝑅𝐴))

Proof of Theorem posng
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-po 4033 . 2 (𝑅 Po {𝐴} ↔ ∀𝑧 ∈ {𝐴}∀𝑦 ∈ {𝐴}∀𝑥 ∈ {𝐴} (¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)))
2 breq2 3768 . . . . . . . . . . 11 (𝑥 = 𝐴 → (𝑦𝑅𝑥𝑦𝑅𝐴))
32anbi2d 437 . . . . . . . . . 10 (𝑥 = 𝐴 → ((𝑧𝑅𝑦𝑦𝑅𝑥) ↔ (𝑧𝑅𝑦𝑦𝑅𝐴)))
4 breq2 3768 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑧𝑅𝑥𝑧𝑅𝐴))
53, 4imbi12d 223 . . . . . . . . 9 (𝑥 = 𝐴 → (((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥) ↔ ((𝑧𝑅𝑦𝑦𝑅𝐴) → 𝑧𝑅𝐴)))
65anbi2d 437 . . . . . . . 8 (𝑥 = 𝐴 → ((¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)) ↔ (¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝐴) → 𝑧𝑅𝐴))))
76ralsng 3411 . . . . . . 7 (𝐴 ∈ V → (∀𝑥 ∈ {𝐴} (¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)) ↔ (¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝐴) → 𝑧𝑅𝐴))))
87ralbidv 2326 . . . . . 6 (𝐴 ∈ V → (∀𝑦 ∈ {𝐴}∀𝑥 ∈ {𝐴} (¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)) ↔ ∀𝑦 ∈ {𝐴} (¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝐴) → 𝑧𝑅𝐴))))
9 simpl 102 . . . . . . . . . 10 ((𝑧𝑅𝑦𝑦𝑅𝐴) → 𝑧𝑅𝑦)
10 breq2 3768 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑧𝑅𝑦𝑧𝑅𝐴))
119, 10syl5ib 143 . . . . . . . . 9 (𝑦 = 𝐴 → ((𝑧𝑅𝑦𝑦𝑅𝐴) → 𝑧𝑅𝐴))
1211biantrud 288 . . . . . . . 8 (𝑦 = 𝐴 → (¬ 𝑧𝑅𝑧 ↔ (¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝐴) → 𝑧𝑅𝐴))))
1312bicomd 129 . . . . . . 7 (𝑦 = 𝐴 → ((¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝐴) → 𝑧𝑅𝐴)) ↔ ¬ 𝑧𝑅𝑧))
1413ralsng 3411 . . . . . 6 (𝐴 ∈ V → (∀𝑦 ∈ {𝐴} (¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝐴) → 𝑧𝑅𝐴)) ↔ ¬ 𝑧𝑅𝑧))
158, 14bitrd 177 . . . . 5 (𝐴 ∈ V → (∀𝑦 ∈ {𝐴}∀𝑥 ∈ {𝐴} (¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)) ↔ ¬ 𝑧𝑅𝑧))
1615ralbidv 2326 . . . 4 (𝐴 ∈ V → (∀𝑧 ∈ {𝐴}∀𝑦 ∈ {𝐴}∀𝑥 ∈ {𝐴} (¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)) ↔ ∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑧))
17 breq12 3769 . . . . . . 7 ((𝑧 = 𝐴𝑧 = 𝐴) → (𝑧𝑅𝑧𝐴𝑅𝐴))
1817anidms 377 . . . . . 6 (𝑧 = 𝐴 → (𝑧𝑅𝑧𝐴𝑅𝐴))
1918notbid 592 . . . . 5 (𝑧 = 𝐴 → (¬ 𝑧𝑅𝑧 ↔ ¬ 𝐴𝑅𝐴))
2019ralsng 3411 . . . 4 (𝐴 ∈ V → (∀𝑧 ∈ {𝐴} ¬ 𝑧𝑅𝑧 ↔ ¬ 𝐴𝑅𝐴))
2116, 20bitrd 177 . . 3 (𝐴 ∈ V → (∀𝑧 ∈ {𝐴}∀𝑦 ∈ {𝐴}∀𝑥 ∈ {𝐴} (¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)) ↔ ¬ 𝐴𝑅𝐴))
2221adantl 262 . 2 ((Rel 𝑅𝐴 ∈ V) → (∀𝑧 ∈ {𝐴}∀𝑦 ∈ {𝐴}∀𝑥 ∈ {𝐴} (¬ 𝑧𝑅𝑧 ∧ ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥)) ↔ ¬ 𝐴𝑅𝐴))
231, 22syl5bb 181 1 ((Rel 𝑅𝐴 ∈ V) → (𝑅 Po {𝐴} ↔ ¬ 𝐴𝑅𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97  wb 98   = wceq 1243  wcel 1393  wral 2306  Vcvv 2557  {csn 3375   class class class wbr 3764   Po wpo 4031  Rel wrel 4350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-sbc 2765  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-po 4033
This theorem is referenced by:  sosng  4413
  Copyright terms: Public domain W3C validator